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You should call it 'entropy' and for two reasons: first, the function is already in use in 
thermodynamics under that name; second, and more importantly, most people don't know what 
entropy really is, and if you use the word 'entropy' you will win every time! 

von Neumann's advice to Shannon as to what to call the function - )-~'~i Pi log p~ 

Abstract 

A survey of practical applications of the maximum 
entropy method to problems in crystallography is 
presented along with the related field of Bayesian 
statistical inference. Included in this review are 
problems of the processing of intensity data, the 
crystallographic phase problem, accurate electron- 
density studies and algorithms for the constrained 
maximization of entropy. The discussion of the phase 
problem reviews the solution of structures from powder 
and single-crystal diffraction data sets, as well as 
applications to electron and macromolecular crystal- 
lography. It is believed that the methodology has a 
secure future and a sound statistical basis, but it is still 
not a technique that is regularly employed by crystallog- 
raphers and the reasons for this are also examined. 

I. Introduction 

Aspects of the maximum entropy (ME) formalism and 
Bayesian statistics have permeated the crystallographic 
literature for about 20 years, yet many crystallogra- 
phers are quite justifiably puzzled by them. Practical 
applications are reported in the fields of crystallographic 
data processing, solving various facets of the phase 
problem, deriving accurate charge densities and 
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deconvoluting powder diffraction overlaps, as well as 
numerous theoretical papers, often with very diverse 
approaches. Yet the methodology has not fully entered 
main-stream crystallography and it makes only fleeting 
appearances, it at all, in current textbooks, despite 
considerable, and often justifiable, claims as to its 
powers and its statistical and mathematical correctness. 

Why is this? What aspects of the ME formalism and 
Bayesian methods can be of value in a routine way to 
crystallographers? What algorithms are of most utility 
in a crystallographic environment? This review attempts 
to answer these questions in a practical way. Like 
everything associated with the method, it is bound to 
arouse some controversy and it is not the intention to 
avoid areas of dispute. At the very least, we hope to 
provoke some thought on the best fields in which to 
apply the technique and how best to use it in a practical 
way to solve practical problems. 

ME theory is an integral part of a much wider topic - 
Bayesian statistics and, in particular, Bayesian infer- 
ence, the latter being defined as a method of plausible 
scientific reasoning. Indeed, it makes most sense when 
considered as part of this field, and so the scope of this 
review includes Bayesian methods also, even when they 
are applied without recourse to maximum entropy, 
although the latter, with its much more extensive 
crystallographic literature, will naturally dominate. 
Following an introduction to the methodology in §2, 
the areas to be investigated in detail are: 

(i) Processing intensity data. §3 discusses the 
extraction of intensities from single-crystal diffraction 
data. This is then extended to the more complicated 
problem of the deconvolution of overlapped reflections 
in powder diffraction and related topics. 

(ii) Solving the phase problem..Ft4 is the longest and 
deals with a wide variety of phasing problems that lend 
themselves so well to ME techniques. Such problems 
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are largely associated with data sets that are incomplete 
in the way they sample reciprocal space and/or have 
data at less than atomic resolution, so that we discuss in 
detail powder and fibre diffraction, electron diffraction 
and aspects of macromolecular crystallography. 

(iii) Accurate charge densities. The ME method has 
been used to derive accurate electron densities using 
both single-crystal and powder diffraction data. How 
reliable are these results, especially when compared 
with multipole refinement methods? Is this a viable 
method for producing accurate electron densities? Is the 
technique suitable for spin densities? All this is 
discussed in §5. 

(iv) Small-angle scattering and related techniques. §6 
surveys the current literature. 

(v) Maximum-entropy algorithms. In §7, there is a 
survey of how entropy is best subjected to constrained 
maximization and which algorithms work best in given 
circumstances. 

(vi) Finally, what of  the future? In §8, there is a 
summary and a brief look at the future. 

These topics cannot always be considered indepen- 
dently from each other, so that various sections will 
inevitably overlap but at the very least it is hoped to 
present a non-specialized overview of an exciting and 
fundamentally significant area of crystallography in 
action. Maximum likelihood methods are not unrelated 
to the statistical methods being surveyed here, but to 
include them would extend the scope of this review far 
beyond its original boundaries; they are, therefore, 
excluded. 

2. The theoretical background 

2.1. The maximum entropy principle 

Consider first a discrete probability distribution for 
which we know a set of N normalized probabilities 
P={Pl ,P2  . . . . .  P~¢}- Such a distribution has an 
entropy, S, or information content I given by 

N 

S = - I  = - ~ pj logpj. (1) 
j = l  

The logarithm in (1) can be to any base; often used 
bases are 2 (in which case the entropy is measured in 
bits) and e (natural units). Equation (1) was first defined 
and used in a non-thermodynamic context by Shannon 
when working with problems of the capacity of 
communication channels, the transmission of signals 
down noisy lines and coding processes (Shannon & 
Weaver, 1949), so creating the branch of science known 
as information theory. In image processing, (1) is called 
a regularizing function. 

Where does the entropy function -~-~iPi logpi come 
from? Shannon uses very simple probability arguments. 
More familiar, from statistical mechanics, may be a 
derivation from combinatorial models and, before 

proceeding to a simple example of entropy in action, 
it will be useful to reproduce it here. It stems from work 
by Boltzmann. Consider an observed image divided into 
pixels. This image can be in any number of dimensions: 
a simple spectrum is one-dimensional, a photograph is 
two-dimensional etc. Now suppose we have a team of 
monkeys (why is it always monkeys?) generating trial 
images by strewing dots at random, and in such a trial 
Ni such dots land in the ith pixel. Let there be n pixels in 

rl 
total and the total number of dots be Ei=I N/= N. The 
image has an associated multiplicity, W: 

W -"N!/NI!N2!.. .Nn!, (2) 

which is simply the number of possible ways that the N 
dots can be distributed in the n pixels. If the resulting 
image disagrees with the data it is rejected; if it agrees 
then it is saved. In this way, a set of images that agree 
with the observed data is generated. Using Stirlings's 
formula for large N, (2) becomes 

log W = N log N - ~ N i log N i 
i=1 

n 

= - g E ( g i / a )  logg i /a  
i=1 

-- - N  )-~Pi logpi, (3) 
i=1 

where Pi = N i / N ,  the fraction of dots found in pixel i. 
The entropy function can thus be seen as a multiplicity 
measure. In addition, in the language of classical ME 
theory, we expect that virtually all the feasible images 
generated by the monkeys will be close to that of 
maximum entropy. As we shall see, this classical 
approach has only limited applicability in the crystallo- 
graphic context. 

Jaynes extended Shannon's ideas to create a general 
formalism of great power and elegance, which he 
applied to a wide variety of problems in physics [see, 
for example, Jaynes (1957, 1983, 1986 1989) - in fact 
anything written by Jaynes is well worth reading.] He 
also put the ME formalism into an historical perspective 
in the line of Bernoulli, Laplace, Jeffreys and Cox along 
with Maxwell, Boltzman and Gibbs (Jaynes, 1979). 

Jaynes overcame dimensionality problems in (1) by 
defining a relative or cross entropy H: 

N 

n -- - ~ pj log(pj/mj), (4) 
j = l  

where the mj are normalized probabilities representing 
our prior knowledge of an event or events. Where we 
have no prior information, these probabilities are taken 
as uniform and H now measures a gain (or loss) of 
information in moving from a prior probability mj to an 
a posteriori probability p~. In the continuous case, (4) 
becomes 
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H = - f p ( x ) l n [ p ( x ) / m ( x ) ] d x ,  

where m(x)  refers to a prior probability distribution, 
often taken as uniform. As we shall see, the ability to 
incorporate prior knowledge into the calculations is a 
major benefit of the ME method. 

Suppose we have m constraints, expressed as 
expectation values, (Ar), which represent our knowl- 
edge derived from experiment or, alternatively, are in 
the form of hypotheses. The constraints can be written 

N 

AriPi = (Ar), r = 1, 2 . . . . .  m, 
i= l  

and from this we wish to derive the set of probabilities 
{P}. Often, the situation under study is a mathematically 
indeterminate one in which N >> m. Herein is another 
appeal of the method in many situations, but it should be 
remembered that many other regularizing functions 
have this same property: it is not unique to entropy 
maximization. The ME approach consists of maximiz- 
ing the entropy (2) or minimizing the information 
content, subject to the constraints (6), to determine {P}. 
The method is clearly being used as a method of 
inference, i.e. we are inferring the probabilities 
{Pl,P2 . . . . .  p,,} in an optimally unbiased way with the 
constraints providing the ability to incorporate prior 
beliefs. Probabilities will be used here in a general way 
often simply related to map or image pixels through 
normalization as in §2.2. 

It is interesting to note that Shannon himself 
considered this extension of the method to fields outside 
communication theory to have no fundamental signifi- 
cance (Tribus, 1979). For a relatively simple discussion 
of the use of entropy maximization in this way and in a 
crystallographic environment, see Collins (1985). 

To make the situation clearer in a practical situation, 
the next section discusses a simple but important 
example - the Brandeis dice problem. 

2.2. The Brandeis  dice p r o b l e m  

This classical problem (and something of a cause  
c~li~bre) may help to illuminate this formalism [Jaynes 
(1979), but see also Prince, Sj61in & Alenljung (1988), 
who discuss it as an introduction to ME theory, but 
solve the equations differently using dual functions - see 
§7]. Consider a dice. When it is thrown, there are six 
possible results i where 1 < i < 6. If it is thrown N 
times, an 'honest' dice will give all p; = 1/6, and an 
average throw of 3.5 when thrown repeatedly. Suppose, 
however, we have a dishonest or biased one for which 
the mean is 4.5, i.e. 

6 

E iPi = 4.5. 
i = l  

(5) Given this information and  nothing else, what prob- 
ability Pi,i=l,6 should we assign to the i spots on the next 
throw? 

Clearly, the problem is indeterminate and it is 
possible to devise an infinity of solutions. (For example, 
the die only gives i - - 5  or i =  4 with equal probabil- 
ities.) The ME principle, however, generates a unique 
solution, which, in the jargon of the subject, is 
maximally unbiased, has a minimum information 
content and is declared maximally non-committal with 
respect to missing information. 

There are two constraints: equation (7) and the 
(6) normalization condition 

6 

pi = 1. (8) 
i = l  

Assuming uniform prior probabilities, we maximize S 
subject to the constraints (7) and (8). This is a standard 
variation problem solved by the use of Lagrangian 
multipliers. Let 2 be the Lagrangian associated with 
constraint (7), then 

Pi = [1/Z(2)]exp - 2  ~ ipi . (9) 
i= l  

The Z function is a normalizing constant that subsumes 
constraint (8): 

Z(2) = ~ exp - 2  ~ . (10) 
i = l  j = l  

A numerical solution using standard variation methods 
gives {Pl . . . . .  P6} = {0.05435, 0.07877, 0.11416, 
0.16545, 0.23977, 0.34749}, with an entropy of 
1.61358 natural units. 

Now what does this result mean? To quote Jaynes, 
' . . .  our result as it stands is only a means of describing 
a state of knowledge about the outcome of a single trial. 
It represents a state of knowledge in which one has only 
(i) the enumeration of the six possibilities, and (ii) the 
mean value constraint . . ,  and  no other  information.  The 
distribution is maximally noncommittal with respect to 
all other matters; it is as uniform . . .  as it can get 
without violating the given constraint.' 

Controversy still rages around this simple result. For 
example, a referee of this paper states that ' . . .  the ME 
solution is not really a plausible solution to the problem 
as stated by Jaynes is perhaps a source of the general 
scepticism toward ME'.  There is also a hostile critique 
by Rowlinson (1970), staunchly attacked by Jaynes 
(1979). A critical appraisal would take us too far afield, 
but this example is at least a simple illustration of the 
formalism at work. Obviously, the dice problem is a 
very marginal situation and, to quote the same referee 
again, ' . . .  one would be very foolish to place any bets 

(7) on the basis of so little information'. This is certainly 
true but proponents of the ME formalism will argue: 
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What do you do in a situation like this - give up or 
extract what little information you can? 

In the dice problem, we have fitted the constraint (our 
knowledge of the average throw of the die) exactly. In 
most experimental contexts, however, this may not be 
appropriate since the constraints are subject to experi- 
mental error. Often a reduced X 2 statistic is used as a 
measure of fit between observed and calculated 
constraints: 

X 2 = [ 1 / ( N -  r)] ~ (1/crj)2[(Aj) - Oj] 2, (11) 
j=l 

where Dj is the calculated value of the corresponding 
constraint (A t) and tri is the corresponding standard 
deviation. A target value of X 2 = 1.0 is often used. This 
can increase the computational problem since one is 
compelled to find the entropy maximum on a contour of 
constant X 2 but modem algorithms can address this 
quite readily for the situation where the constraints are 
convex; it is more problematic when this is not the case. 
It should also be noted that this use of (11) assumes that 
the errors are either normally distributed or close to it, 
which may not always be the case. 

2.3. More on the ME principle 

As we have already indicated, this methodology can 
be controversial [for a further flavour of this, see Jaynes 
(1987), or the discussion section in Donoho, Johnstone, 
Hoch & Stern (1992)] and, indeed, it is sometimes 
applied in very inappropriate ways. However, to place 
the procedure on a secure statistical basis, Shore & 
Johnson (1980a,b) have used the theory of statistical 
inference to show that, indeed, constrained entropy 
maximization is a procedure of optimal consistent 
inference. In this case, the entropy function 
-~--~i Pilogp, • is derived from a set of postulates, 
some of which are the basic axioms of probability 
theory and others are based on heuristic arguments: 

(i) The result of any statistical inference should be 
unique. 

(ii) It should also be invariant with respect to any 
coordinate system or transformation. 

(iii) For the situation where information is indepen- 
dent, the results of an inference procedure should give 
the same answer if the information is used indepen- 
dently or jointly. 

(iv) Item (iii) should also hold for independent 
subsystems. 

Tikochinsky, Tishby & Levine (1984) discuss 
reproducible experiments and consistency conditions 
to show that under linear constraints the ME principle is 
the only consistent algorithm for inferring discrete 
probability distributions with given constraints, 
although there is some dissension here as well as in 
Shore & Johnson's work (see, for example, Tittering- 
ton, 1984). 

Bricogne (1984, 1988a) has also derived the 
maximum entropy equations in a crystallographic 
phasing environment using the Daniels saddlepoint 
method (Daniels, 1954). [There is a good review of 
the saddlepoint method, a formalism that most crystal- 
lographers seem to ignore even when it could be of 
considerable value to them, by Reid (1988).] Here, 
there is no recourse to the terminology or mathematics 
of information theory at all, and yet Bricogne (1984, 
1988a) has obtained equations that are identical to those 
derived from the ME approach. This can be viewed as 
an independent justification for the method, provided 
we are working with probabilities. For some research- 
ers, the method is not used in its strict probabilistic 
mode but only as a smoothing or regularizing function 
for the improvement of images of which electron- 
density maps are a three-dimensional example. The 
underlying probability rationale can be lost in this 
situation, as sometimes happens when working with 
accurate electron densities. 

The relationship of the ME formalism with thermo- 
dynamics takes us far away from the focus of this 
review, but Tribus (1961) has shown how all the laws of 
classical thermodynamics can be derived using the ME 
principle. In a later review (Tribus, 1979), he states: 
'The debates engendered by this approach have been 
extensive and, on occasion, bitter. I have concluded 
from them that thermodynamics is as much a branch of 
theology as it is a branch of science!' 

From this very brief description, maximum entropy 
may seem an isolated statistical technique but in fact it is 
best perceived as a part of Bayesian statistics, and this 
topic now needs to be discussed. 

2.4. Bayesian statistics 

Bayes's theorem, on which Bayesian statistics is 
based, appears in many guises. It was first derived by 
the 18th century English clergyman and talented 
mathematician Thomas Bayes, and found in his papers 
on his death. [See Molina (1963) for a reprint of this 
paper and a critical discussion.] It was rediscovered by 
Laplace, who used it to solve a wide variety of 
outstanding problems in astronomy. At its simplest, 
the theorem is uncontroversial. Let us suppose that we 
are carrying out an experiment to gain information on a 
parameter 0. Before commencing the experiment, we 
have prior belief of the possible values of 0, which we 
express as an unconditional probability distribution 
p(O). If the experiment yields data represented by the 
vector x, then Bayes's theorem states 

p(01x) (x p(xlO)p(O). (12) 

The constant of proportionality may be determined by 
normalization. The term p(01x) is called the posterior 
distribution (or simply posterior); the function p(xl0) is 
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the likelihood, which consults the data from the 
experiment, and p(O) is the prior probability. 

As written, this is an uncontroversial equation simply 
derived from the axioms of probability theory and used 
by all statisticians to invert conditional probabilities, 
i.e. to obtain p(xl0) from p(01x) and vice versa. 
However, Bayesian statisticians take the topic a whole 
step further by using (12) as a model of scientific 
inference. In addition, probabilities are defined not in 
the narrow frequentist way but in the broader, and much 
more controversial, sense of degree of belief, which is 
ideally suited to science where measurements can be 
very difficult to relate to frequencies without the use of 
very convoluted argument, and a counter-intuitive use 
of language. Furthermore, (12) is used iteratively: the 
posterior becomes an updated prior and the whole cyclic 
process repeated until convergence is reached. From 
these departures from classical statistical methods stem 
a great deal of sometimes very acrimonious dissent. 
(See, for example, Jaynes 1979.) It is not possible or 
desirable to pursue the intricacies of the Bayesian 
method but here we can recommend two books by 
O'Hagen (1988, 1994). The classic text on likelihood is 
by Edwards (1972), although this is quite strongly 
critical of entropy techniques. In the crystallographic 
context, there is a very clear exposition by French 
(1978), who describes a three-stage model in crystallog- 
raphy from a Bayesian viewpoint, and an elegant paper 
concerning the crystallographic phase problem in a 
Bayesian context by Bricogne (1988a). Finally, there is 
a clear account of the formalism in the context of the 
deconvolution of overlapping powder diffraction peaks 
by Sivia, David, Knight & Gull (1993). 

How does the ME principle fit into the Bayesian 
framework? A common objection to the use of Bayes's 
theorem is that a systematic error or bias in the prior 
p(O) will give rise to similar errors in the posterior 
p(01x). The use of the likelihood, i.e. the intervention of 
the experimental data, makes this less of a problem than 
may appear at first but the ME formalism becomes a 
very powerful tool here: we chose a prior via maximum 
entropy, which has a minimum bias and is maximally 
non-committal towards missing data. This is then an 
optimal prior for use with Bayes's theorem. This turns 
out to be 

p(O) = exp[entropy(0)]. (13) 

A prior with a large entropy will have a minimum of 
artefacts or structure when compared with one derived 
under similar constraints that has a small entropy. 

For example, in the Brandeis dice problem, once the 
ME prior is set up; the die is then thrown. This 
experimental result is used to modify the ME prior via 
Bayes's theorem, and this process continues as data 
accumulate. As a general text on the use of the ME 
method as a tool for processing data in both Bayesian 
and non-Bayesian contexts, we recommend Buck & 

Macaulay (1991), although it presents very diverse 
approaches to the methodology. 

In summary: 
(i) Bayes's theorem tells us how to modulate prior 

probabilities as extra evidence accrues. 
(ii) ME theory tells us how to assign these prior 

probabilities in the first place. It readily admits the use 
of prior knowledge and also works in mathematically 
indeterminate situations. 

We are now ready to survey the literature for 
applications of Bayesian methods and the ME formalism 
to practical problems in crystallography. We will begin 
with the processing of intensity data. 

3. Data processing 

3.1. Single-crystal data 

A frequent problem that arises in the collection and 
measurement of intensity data concerns the weak 
reflections. Their true intensities are always non- 
negative but experimentally this may not be the case 
because of counting errors. It is traditional to treat 
negative intensities as zero; indeed, at first sight, there 
seems little else to do with them, but in one of the 
earliest papers in the crystallographic literature to 
employ the Bayesian methodology, French & Wilson 
(1978) have described an alternative approac h using 
Wilson statistics (Wilson, 1949) as a source of prior 
information, and the method has been utilized in a 
diffractometer profile processing program (Oatley & 
French, 1982). 

What prior information do we have about the 
intensity, I, of a reflection? In addition to the simple 
requirement of non-negativity, we know that, taken as a 
whole, any moderate or large data set satisfies Wilson 
statistics. Thus, for acentric reflections, our prior 
knowledge is 

p(l) = ,V, -~ e x p ( - I /  Z),  I > O, 
(14) 

p(1) -- 0, I < 0, 

while, for the centric case, 

p(t) = (2zrZl) -~ exp( - I /2Z) ,  1 >__ 0, 
(15) 

p(1) = 0, I < 0, 

where 2? is the mean intensity of the relevant shell in 
reciprocal space, which is currently unknown because 
the individual intensities are unknown. It is important to 
remember that Wilson statistics apply to a random and 
uniform distribution of atoms in the unit cell; this works 
well enough for medium-sized structures but is quite 
inappropriate for proteins because of solvent regions, 
very small structures, situations where there are 
dominant scatterers, as well as any structure that 
displays a high degree of atomic regularity. 
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We can now apply Bayes's theorem to this situation: 
all the intensities, I, whether positive, zero or negative, 
are used to estimate 27; from this, we obtain a posterior 
distribution estimate of the intensity J, p(JJl), from 
which we can estimate the expectation value of the 
intensity given I, E(JII): 

oo 

E(JII) = f Jp(JIl) dJ (16) 
0 

and its associated variance var(JI/): 

var(JI/) -- f [I - E(JlI)]2p(JIl) dJ. (17) 
0 

It seems to us that this is a secure basis on which to 
process data and one that should be used routinely, 
although one must always bear in mind the caveat of the 
applicability of Wilson statistics. Why is it not used in 
this way? It seems to be absent in many crystallographic 
computing packages, but CCP4 (1993) and XTAL (Hall 
& Stewart, 1992) are two that do provide it. Blessing 
(1987, 1989) reports that the method is helpful with data 
sets that have a large fraction of weak data. However, 
Watkin (private communication) expresses the experi- 
ence that the method often overestimates the weak 
reflections; perhaps this is a consequence of using 
Wilson statistics or a lack of accuracy in the measure- 
ment of weak reflections, but obviously the method is 
extendable beyond such restrictions. For an example of 
the modified use of the Bayesian approach that does not 
use Wilson statistics as a prior, see Lenstra et al. 
(1991). In their case, working on CIIHIsN202, they 
succeeded in incorporating an extra 1363 weak reflec- 
tions into the least-squares refinement using Bayesian 
analysis of the weak reflections; the R factor naturally 
increased but the variances of the atomic coordinates 
fell by a factor of two. It is also worth mentioning here 
that the learned-profile method of diffractometer data 
collection is, in reality, a Bayesian method in which 
knowledge of peak profiles is accumulated and used 
during data collection (Clegg, 1981). Related to this is a 
technique devised by Wilkinson, Khamis, Stansfield & 
Mclntyre (1988), in which weak reflection intensities 
are extracted via a peak profile prior derived from 
strong reflections that are nearby in reciprocal space. It 
seems to be successful when applied to neutron area 
detector data. 

Another problem that arises in data processing is the 
scaling of intersecting data sets where a given reflection 
h has its intensity I measured in several data sets 
(multiple films or frames from an area detector) i. 
Denote such an intensity as I~ and the corresponding 
average intensity as Jh and let G~ be the scale factor that 
puts Jh on the scale of 1~. Collins (1984) (see also 
Prince & Collins, 1992) has proposed the use of the 
entropy functional 

S = - ~~(Gi, Jh)'log[(GiJh)'/l~. 1, (18) 
h, i  

where the prime denotes normalization. Q is maximized 
by setting 

OS/OGi = 0  (19) 

and the procedure is used iteratively to give an optimal 
value for Jh. Although there are some problems with 
weights, the scheme converges well even with difficult 
data and the method offers a robust and error-resistant 
method of scaling, at least with the data used as a test 
case, although the purist can question the use of (G~ jh), 
even when normalized, as a probability measure in the 
entropy expression (18). 

There is also a second problem here that recurs 
throughout this review (it is by no means unique to this 
problem): There are a number of papers proposing 
techniques employing a ME or Bayesian formalism that 
seem eminently worthwhile but lead nowhere in the 
sense that they are not taken up and used as part of the 
crystallographic armory. This makes a critical assess- 
ment very difficult. One cure for this problem is quite 
simple - program the ideas, provide a good interface to 
existing packages and distribute the code freely! 

When collecting data on an area detector, the 2D 
diffraction pattern is measured as N pixels, usually of 
equal size, and the result is a set of accumulated counts 
in each of the pixels {Pij}. A problem arises as to the 
determination of the positions of the Bragg peaks in this 
set. Just as for obtaining intensities, the strong 
reflections really pose no problems, weak reflections 
do. Lehmann, Robinson & Wilkins (1986) carry out a 
constrained entropy maximization to obtain a peak 
boundary and then use the raw data to obtain a peak 
intensity. Each pixel is normalized by dividing by the 
total counts. It is now treated as a probability measure. 
Three constraints are imposed: 

(i) The total number of counts is constant. 
(ii) Let Pit be the calculated count in pixel i , j  and let 

o 0 be the recorded normalized count for the same pixel. 
The reduced X 2 statistic defined by 

g 2 = N -1 ~ Wiy(Pij -- Oij) 2 (20) 
ij 

is set to unity and the wit are weights approximated by 

w ij : N / ~ij o ij . (21) 

(iii) We know that the Bragg peak is smooth. The 
entropy functional imposes smoothness but additional 
local smoothness is imposed by coupling intensities of 
adjacent peaks. 

With simulated data, the results are convincing, 
although this method or any related one also does not 
seem to have found common acceptance or usage. 
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3.2. Powder diffraction data 

In powder diffraction, a three-dimensional diffraction 
pattern is collapsed into one dimension giving rise to the 
familiar problem of peak overlap, which exacerbates all 
the problems found in the single-crystal case. The 
overlaps are of two sorts: those that arise accidentally as 
a results of lattice parameters and Bragg angle and those 
that are a consequence of point-group symmetry, and 
for which the overlap is exact. Clearly, the latter are a 
much more difficult problem than the former but both ~ 0.2 
serve to limit the applicability of powder diffraction as a 2 

@ 

routine tool for determining and refining crystal "~ o l 
structures from powders. The synchrotron has made a 
profound difference to the problems of structure 
solution, but the intrinsic overlap arising from line ~ o 
broadening and the existence of exact peak overlap in 

Z 

high-symmetry space groups still impose very severe 
limitations on what problems can and cannot be 
addressed. For a comprehensive and readable review 
of all these difficulties, see Shirley (1984). We will 
discuss the problems of ab initio structure solution from 
such data sets in ~4.5, but it is relevant to survey here 
the Bayesian and ME methods that have been used for 
overlap deconvolution at the point of data processing. ~ 0.2 
For a brief, but useful, survey of all the other non- ~, 
Bayesian methods that have been proposed, see 
Estermann, McCusker & Baerlocher (1992). ~. 

"~ 0.1 
In practice, the f ield is not large. The most =~ 

noteworthy is a recent paper by Sivia & David 
(1995), which extends the French & Wilson approach ~ o 
to include not only profile fitting but peak deconvolution z 
as well. It follows an earlier approach to the problem by 
the same authors (Sivia, David, Knight & Gull, 1993) 
using polynomial deconvolution. They propose two 
possible priors: (1) the Wilson and (2) the Jeffreys 
prior. The latter (Jeffreys, 1939) takes the form 

p(O) o~ 1/0. (22) 

It is equivalent to a probability density function that is 
uniform with respect to log(0) and arises when there is 
complete ignorance of the absolute scale of the intensity 
data. Fig. 1 shows this methodology in action for 
benzene. The ability to deconvolute almost completely 
overlapped reflections and to deal with the problem of 
negative intensities is noteworthy. 

It is too early to cast a definitive judgement on the 
method proposed but it does look exciting, and is 
extendable to non-Wilson statistics. Earlier, David 
(1987, 1990) had proposed maximizing the entropy of 
a Patterson map as a method of resolving even exact 
symmetry-imposed overlaps. All the intensities, 
whether overlapped or not, are used to generate a 
Patterson map; its entropy is maximized subject to 
intensity constraints and this is followed by an inverse 
Fourier transform, which yields estimates for individual 
intensities. The method worked well for the test case of 

TiO 2 in space group P42/mnm in resolving even 
overlaps arising from point-group symmetry and is 
capable of working with neutrons without resorting to 
multichannel formalisms (Bricogne, 1988a), but it is 
limited in the complexity of the problem that can be 
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Fig. !. The observed and calculated powder diffraction pattern of 
benzene between 0.953 and 0.967 ,~,. (a) The results of least-squares 
fitting using the Pawley method. (b) The square of individual 
inferred structure-factor amplitudes from the Bayesian analysis. (c) 
The calculated intensities given by the refinement of the crystal 
structure. (From Sivia & David, 1995.) 
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tackled. David estimates that it could be of value in 
cases where the cell volume is less than 1000 ~3 but this 
may be rather optimistic (TiO 2 has a unit-cell volume of 
only 62.4 ,~3). 

Working purely in a maximum entropy environment, 
Steenstrup & Wilkins (1989) have also demonstrated its 
use in the processing of energy-dispersive powder 
diffraction patterns from synchrotron radiation invol- 
ving EuBa2Cu309_ ,. They obtain better looking spectra 
in which it is easier to identify diffraction peaks and 
fluorescent lines. 

It is worth noting also that the ubiquitous Rietveld 
method (Rietveld, 1969) is also a Bayesian non-ME 
method of peak deconvolution for powder diffraction 
data, not unrelated to that of Wilkinson et al. (1988) as 
described in §3.1 in which weak peaks are extracted 
from profile parameters derived from strong reflections. 

In conclusion, Bayesian approaches have much to 
offer here especially with weak data sets. In subjects 
other than crystallography, ME methods have often 
demonstrated considerable power in extracting weak 
signals from noisy backgrounds - it is something they 
can do very well and it seems to us that this is a field 
with much to offer, but there is too little in the way of 
available software at present. 

4. The phase problem 

4.1. Introduction 

We now come to the most difficult and fundamental 
problem in crystallography - that of the phase problem. 
Direct methods are now routine for all light-atom 
structures with up to ca 150 atoms in the asymmetric 
unit [see Woolfson (1987) for a historical review of this 
subject and Woolfson & Fan (1995) for an excellent 
new monograph], and even small proteins such as 
crambin and rubredoxin have also been solved in this 
way (Hauptman, Weeks, Smith, Teeter & Miller, 
1993), whilst the heavy-atom method is an almost 
routine technique for solving most biological macro- 
molecular structures. However, there is still a great 
need for a more powerful and consistent formalism for 
approaching structure solution. In particular, there are a 
number of areas involving both small and large 
molecules where existing methods either fail completely 
or are very laborious. For small molecules, these are 
cases where the data are either incomplete and/or 
extend to less than atomic resolution, i.e. less than ca 
1.1 A. This means that structures from powder or fibre 
diffraction and electron diffraction can be very difficult 
to solve, especially if there are no heavy atoms present. 
For example, how many unknown all-light-atom 
structures (say nothing heavier than oxygen) with 
more than 30 non-H atoms in the asymmetric unit 
have been solved ab initio from powder diffraction 
data? The answer is none. In protein crystallography, of 

course, the ultimate challenge is the ab initio solution of 
a native protein without derivative data. Is such a 
calculation possible? 

We will now address these problems individually, 
starting with a short theory section, and assess what has 
been achieved so far by ME and Bayesian approaches. 
The author does, however, have a problem here: a.lot of 
the results to be presented are partly his own work, and 
this presents difficulties when writing a review. 
Nonetheless, a good measure of objectivity will be 
attempted! 

4.2. Some necessary theory and notation 

We start with a set of unitary structure factors [Uhl °bs, 
which are derived from the intensity data by 
normalization procedures. (For N point atoms of unit 
weight, IUhl ° b s -  1/N[Fh[°bs.) The notation U will be 
used to define an arbitrary vector of nU's ,  
U -  (Uhl, Uh2, Uh3 . . . . .  U~). We also have a set of 
phase angles 9h, most of which are either unknown (the 
ab initio case) or only approximately determined. For 
ab initio structure solution, because of rules of origin 
and enantiomorph definition, some phases can usually, 
but not always (it depends on the space group), be 
assigned subject to certain well known rules, whereas, 
in the case of macromolecular crystallography, there 
will be a large set of such phases, albeit rather 
inaccurately known at times, derived from isomorphous 
replacement methods. In electron diffraction,, the 
Fourier transform of the corresponding image may 
give useful phase information. 

Now, traditional direct methods attempt to determine 
the unknown phase angles from probabilistic considera- 
tions working in a reciprocal-space formalism in which 
triplets and negative quartets are generated as relation- 
ships between phases and these relationships used in 
tangent-like formulae to refine and extend phase angles. 
Only when sufficient phases are determined do we 
switch to real space with the generation of trial electron- 
density maps. What are the underlying mathematical 
principles here? Bricogne (1988b, 1991b) is recom- 
mended for a clear relatively non-mathematical descrip- 
tion and we shall follow his arguments closely in this 
and the next section. 

First: a model in which random atoms are uniformly 
distributed in the unit cell (the Wilson model) has been 
used. This is not really problematic for most small 
molecules but is significantly in error for macromole- 
cules, where the structure comprises disordered solvent 
regions and ordered protein (see §3.1). 

Second: we have constructed joint probability dis- 
tributions of small collections of structure factors, 
usually three (triplets), P(UhUkU_h_k), or four 
(quartets), P( U h U k U I U_h_k_l). 

These are marginal distributions into which we have 
substituted the known structure-factor amplitudes to get 
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joint conditional distributions which act as indicators of 
the most probable combinations of the associated 
phases, and these are the relationships that get used in 
the tangent formula. 

Problems arise from this approach: 
(i) To make the mathematics of deriving the joint 

probabilities tractable, severe approximations are used 
(either the Edgeworth series or related Gram-Charlier 
methods), which make the probability distributions 
accurate only for very small U magnitudes, whereas, 
in practice, we need to phase the large ones! 

(ii) The triplets and quartets are marginal distribu- 
tions with every unwanted phase or magnitude either 
absent or integrated out. What we really need is to 
develop phases via a probability distribution of the form 
P(new phaseleverything we currently know) without 
resorting to marginal distributions at all. But, to quote 
Bricogne (1988b): 'there is no tractable unique expres- 
sion for P(F) into which we could substitute the 
measured values of the large moduli to get the 
conditional distribution of the corresponding 
phases. . . ' .  

With this in mind, let us now investigate the ME 
approach to phasing. 

We need to extend our nomenclature: those reflec- 
tions that are phased comprise the basis set {H}; the 
disjoint set, the non-basis set, of unphased amplitudes is 
{K}; the phase problem is one of phasing [UheKI °bs from 
Uh~ri. At first sight, solving a crystal structure seems 
straightforward: a set of reflections is chosen to form 
the basis set. For a small molecule, for example, this 
will be the origin-defining ones that obey the required 
rules. These reflections are used as constraints in an 
entropy maximization to generate a map qME(x). Such a 
calculation is a far cry from the Brandeis dice problem 
of §2.2, but there is a link via the use of the ME method 
in handling indeterminate problems where only certain 
expectation values are known; in this case, the 
expectation values are the basis set U's - both phase 
and magnitude. Thus, qME(x) satisfies the following 
conditions: 

(i) It is optimally unbiased, i.e. it has maximum 
entropy. 

(ii) Its Fourier transform reproduces the constraints 
to within experimental error. 

(iii) The Fourier transform of qME(x) generates 
estimates of amplitudes and phases for reflections in 
{K}. This process is called extrapolation. 

This is shown diagrammatically in Fig. 2. 
At this stage, for a small basis set, the extrapolation is 

rather weak and the structure is certainly not visible in 
any map one cares to generate. So what can be done? 
The most obvious answer is to examine the most 
strongly extrapolated reflections and to use the phase 
information from them coupled with the observed U 
magnitudes and to pass these into the basis set. As we 
will see in ~4.3, this usually leads to disaster: the ME 
solution gets trapped in a local maximum in phase 
space, whole subsets of reflections become wrongly 
phased and the structure remains unsolved. This is a 
manifestation of the branching problem: phases are 
being selected without exploring the relevant U space in 
sufficient detail so that what appears to be an 
unambiguous choice of new phase is, in reality, no 
such thing. So what can be done? Extra unphased 
reflections must be added to the starting set with 
permuted phases giving rise to a multisolution environ- 
ment just as in conventional direct methods and these 
reflections should be those that are very weakly 
extrapolated so that their inclusion in a new basis set 
offers maximum surprise to the calculations. How then 
do you select the correct permutation set? Can you 
choose those that give maps of maximum entropy? The 
answer to this is no and it is discussed in detail in {~4.10, 
but the Bricogne formalism has the answer. 

4.3. The Bricogneformalism 

Bricogne has outlined a methodology of solving 
crystal structures based on the ME or saddlepoint 
method coupled with likelihood evaluation, which 
directly addresses the branching problem. This he has 
developed in a series of papers (Bricogne, 1982, 1984, 
1988a,b, 1991a,b,c, 1992, 1993). We will now 
examine this foimalism, continuing to follow the 
arguments in Bricogne (1988b, 1991a). 

What have we done when we have defined a basis set 
and performed the entropy maximization? We have 
explored P(U) around the basis set phase subregion in U 
space. Why do we need maximum entropy? We only 

ME 

IUh~.l, ePh~n 

Fig. 2. Phasing via maximum entropy. 
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require P(U) to reproduce those U magnitudes that are 
members of the basis set. It makes no direct reference to 
non-basis-set reflections and so it is highly indetermi- 
nate. The ME method is an obvious way of overcoming 
this: for such a phase choice maximizes the entropy of 
the distribution subject to the constraint that it must 
reproduce the basis set amplitudes and phase to generate 
a non-uniform distribution of atoms qME(x). POU) is 
thus multimodal and this is the source of the branching 
problem. 

Bricogne (1984, 1988a, b, 1991a) has shown a second 
way of getting to this same result without invoking the 
heuristic arguments of ME theory. This involves the 
saddlepoint approximation (Daniels, 1954; Reid, 1988), 
which is invoked as an alternative to the ME principle 
and shown to generate not only the same equations but 
also more accurate modifications of those predicted by 
the ME method alone (Bricogne, 1988a). 

There is a remarkable benefit of the ME or 
saddlepoint method here: the approximations to P(U) 
are now accurate for large U magnitudes and we have 
recentred the usual Edgeworth-series expansion for 
P(U) away from U -- 0. In real space, this is equivalent 
to leaving behind the Wilson uniform distribution of 
atoms to a non-uniform one - one of the long-term goals 
of direct methods. 

So far, all ME phasing methods perform in this way 
whether their authors realize it or not, but what can we 
do next? How do we stop ourselves locking into an 
incorrect solution? Let us accept that we cannot 
construct a tractable unique expression for P(U) into 
which we could substitute the measured values of the 
moduli to get the conditional distribution of new 
phases, instead let us explore new subregions P(U) 
where we test various new phase combinations to 
overcome the multimodality or branching problem. In 
practice, we take the current basis set and add to it a 
few reflections with large associated U magnitudes, 
which optimally enlarge the second neighbourhood of 
the basis set. The second neighbourhood is defined by 
reflections h I + tRgh2 for h l, h 2 E H, where tRg is the 
transpose of a rotation matrix obtained from the crystal 
space group. For acentric reflections, phase choices 
can be +zr/4, +3rr/4, i.e. quadrant permutation; for 
centrics, both possible values are used, e.g. O, Jr or 
+zr/2. We now have several possible basis sets and we 
now explore P(U) around each of these phase 
subregions by performing a constrained entropy 
maximization for each phase permutation and so 
derive associated phase and amplitude extrapolation. 
However, we have made no judgement as to which 
subregion is more likely to be the correct one. In the 
Bricogne formalism, this decision is made using 
likelihood. For every subregion, P(U) is approximated 
to a multivariate Gaussian centred around the vector 
U ME corresponding to qME(x). It is possible to express 
this in an analytical form. Several approximations exist 

but we will concentrate here on the simplest - the 
diagonal form in which the extrapolates in U are 
decoupled and treated as independent, i.e. the 
covariances between them are zero. This gives rise 
to readily tractable likelihood functions. 

For each acentric extrapolated non basis set reflection 
k, the likelihood measure, in its diagonal approxima- 
tion, can be written (Bricogne, 1984, 1988a,b; 
Bricogne & Gilmore, 1990) 

Ak = (Iv,,t° s/ kz + 

x exp{-½ [([Uk[°bs) 2 + [U~E[Z]l(ek27 + ak2)} 

× lo[IUkl TM IU~El/(ek Z + o2)], (23) 

where E h is the statistical weight of h, a 2 the variance of 
I Uk[ °bs and Z' a refinable measure of unit-cell contents, 
27 = 1/(2N) for N point atoms in the unit cell. The 
distribution (23) is a Rice distribution comprising a 
Gaussian (the exponential term) with an offset repre- 
sented by the Bessel-function term (Io). Note that this 
expression is a measure of agreement between [Uk[ TM 

and I uME[; indeed, it has a maximum where 
IUkl°bS-----Iu~E[. For the centric case, the Bessel 
function is replaced by a cosh term: 

Ak = [2[Ukl°bS/zr(2ek Z' + O'2)] 

X exp{-½ [(IUkl°bs) 2 + IuMr'lz]/(Zek.E + cry)} 

x cosh[[Vk[ °bs [uMWl/(Zek.E+~)]. (24) 

In the spirit of traditional likelihood analysis, we can 
defined a corresponding null hypothesis for the situation 
of null extrapolation, ]U ME] = 0, which gives the 
Gaussian distribution of Wilson statistics. For acentric 
reflections, 

A ° = [IUkl°bs/(ekZ' +a2 ) ]  

× exp{--½(lUkl°bs)Zl(ek.Z+a~)}. (25) 

The extension to centric reflections is obvious. Define 

/a¢ = log(Ak/A°).  (26) 

Then the global log-likelihood gain (LLG) is 

LLG = ~ /_~ .  
k 

(27) 

The LLG will be largest when the phase assumptions 
for the basis set lead to predictions of deviations from 
the Wilson distribution in the unphased reflections, and 
in this context it is used as a powerful figure of merit. 
However, rather than just choose those phase sets with 
high associated LLG, which is a somewhat subjective 
process, the Student t test is used (Shankland, Gilmore, 
Bricogne & Hashizume, 1993). The LLGs are analysed 
for phase indications using the t test, which defines the 
level of significance of the difference between two 
means. The simplest example involves the detection of 
the main effect associated with the sign of a single 
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centric phase. The LLG average, #+, and its associated 
variance V + are computed for those sets in which the 
sign of this permuted phase under test is +. The 
calculation is then repeated for those sets in which the 
same sign is - to give the corresponding # -  and 
variance V-. The t statistic is then 

t =  I#~ + - u - I / ( V  + + V-)1/z (28) 

The use of the t test enables a sign choice to be derived 
with an associate significance level. This calculation is 
repeated for all the single-phase indications and is then 
extended to combinations of two and three phases. An 
extension to acentric phases is straightforward by 
employing two signs to define the phase quadrant both 
in permutation and in the subsequent analysis. In 
general, only relationships with associated significance 
levels <2% are used, but this is sometimes relaxed with 
sparse data sets. 

Only those solutions that are consistent with the t-test 
results are kept further reduced if necessary to leave 
8-16 remaining. New reflections are then permuted and 
a corresponding set of ME solutions is generated. In this 
way, we build a phasing tree in which each phase choice 
is represented as a node and has a score, or figure of 
merit, based on its log-likelihood gain (LLG). The root 
node of the tree is defined by the origin-defining 
reflections. The first set of phase permutations defines 
the second level, Those that do not pass the analysis of 
likelihood are discarded, then further phase permuta- 
tions are used to generate the third level and this 
continues until a recognizable structure or structural 
fragment appears. Fig. 3 shows a simple outline of a 
three-level phasing tree. There is a nice example of this 
method in action using idealized one-dimensional data 
by Carter (1994). Note that likelihood is not used in this 
approach in the Bayesian way of multiplying the prior, 
instead it becomes a very powerful figure of merit 
which controls the branching problem by selecting the 
correct nodes. However, there is a Bayesian connection 
in the way in which the prior, qME(x), is continually 
updated from level to level in the phasing tree by adding 
new phase information. We shall see later that the 
power of likelihood is such that it can be used to make 
other decisions concerning envelopes for macro- 
molecules, parameters for non-crystallographic 
symmetry and to measure the effective number of 
atoms in the unit cell at low resolution. 

Level 1 

Level 2 
Level 3 

I I (Root node) 

1113 14 ~ 1 3 1 6  17 ~ 1 5 1 9  

Fig. 3. A three-level phasing tree with 15 nodes. 

Now, qME(x) is a probability distribution and not a 
map in the traditional sense (although its peaks do 
correspond to atom positions), and thus it needs 
conversion to a more conventional one. The trial 
electron density maps generated in this approach are 
called centroid maps and can be visualized as Sire- 
filtered maximum entropy maps. For k acentric, the 
Fourier coefficients are 

IUkl°bS[ll(Xk)/ lo(Xk)] exp (igo~E), (29) 

where 

X k - ( 2 g / e k ) l U k l  °bs Iu~EI . (30) 

For k centric, these coefficients become 

with 

I gkl °b~ tanh(Xk) exp (i~o~ E) (31 ) 

X k = (N/ek)lUkl °bs IukMEI. (32) 

The practical differences between centroid and 
maximum entropy maps can be seen with reference to 
membrane data in Gilmore, Shankland & Fryer (1993). 

One final practical point needs to be made here 
concerning the tightness with which one fits the 
constraints in the entropy maximization. This has been 
discussed briefly in §2.2 but can be very important in a 
phasing environment. If the fit between IUkl °b~ and 
I u~EI is very slack, the ME extrapolation is weaker 
than it can be, and the phasing power and the 
discriminating power of likelihood is correspondingly 
reduced. If, however, there is overfitting, spurious 
details (often looking like small stones) appear in 
qME(x), which give false phase indications. The latter 
situation can often be detected by the use of likelihood: 
if the LLG is monitored through the iterative cycles of 
entropy maximization, a maximum is often reached and 
this can be used as a place to stop. Alternatively, the X 2 
statistic can be used with a default choice of unity as a 
place to terminate. In practice, for small basis sets 
either method works well, but for large basis sets 
maximum LLG is preferred. 

The M I C E  computer program is a practical imple- 
mentation of part of the Bricogne formalism (Bricogne 
& Gilmore, 1990; Gilmore, Bricogne & Bannister, 
1990; Gilmore, 1993), as is B U S T E R  (Bricogne, 1993). 
Surveys of the method and its practical applications can 
be found in Gilmore & Bricogne (1992), Gilmore 
(1993) and Gilmore, Shankland & Bricogne (1993). The 
main components of M I C E  are: 

(i) A robust iterative entropy-maximization algorithm 
in which phased intensities, non-crystallographic sym- 
metry and the contributions from known structural 
fragments correctly placed in the unit cell can be used as 
constraints. Envelopes can be used as non-uniform 
priors. The entropy maximization can stop at maximum 
LLG or at a given g:. 
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(ii) A tree-directed search through a space of trial 
phase sets using entropy maximization for each phase 
permutation. 

(iii) Estimation of LLG for each phase set and the use 
of the t test to prune unwanted nodes. 

(iv) The generation of centroid maps and associated 
graphics. 

From the very beginning it was recognized that the 
ME formalism was not subject to the same limitations as 
traditional direct methods and, in particular, the 
technique is stable irrespective of data resolution or 
the sampling of reciprocal space, and is also robust with 
respect to errors in the intensity data, which themselves 
could be modelled in the calculations. It also abandons 
the Wilson random-atom model and allows the inclusion 
of molecular envelopes and other constraints. Thus it 
should, at least in principle, be capable of tackling 
difficult problems in powder and electron diffraction as 
well as macromolecular crystallography. 

4.4. Single-crystal X-ray diffraction 

Normalization is the first stage of a structure solution 
when direct phasing is employed. To do this, we need 
expectation values for intensities. As we have already 
explained, this nearly always invokes Wilson statistics. 
Castleden & Fortier (1994) have examined a ME 
alternative. It is possible to use an exact series 
representation for the required expectation values but 
this poses a number of numerical problems and the ME 
alternative is shown to be a little less accurate but 
nonetheless a very workable alternative. Given the 
critical nature of normalization, more work should be 
done in this area. 

The first application to a single-crystal structure 
solution came from Narayan,  Nityananda & Vani 
(1983) using arguments based on preferred maps as 
discussed in §2.1. This is a pioneering piece of work that 
has been somewhat underestimated but employing a 
methodology that has not been used since. Their method 
was to refine initial random phases by maximizing the 
entropy with respect to the phase itself. After demon- 
strating its applicability in two dimensions, they used 
random phases to solve the structure of (_2E, 6E)-2,6- 
octadiene-l,8-dioic acid in space group P1, a 12-atom 
problem, and had some success with a 19-atom structure. 
Unfortunately, they were limited in accessible problems 
by available computer power. There is an interesting 
quotation near the end of their paper: ' . . .  we feel that the 
maximum entropy method is not just the direct methods in 
a new disguise, but is distinctly different. As such it 
merits further study in more complicated situations.' In 
fact, their method was unlikely to succeed on large 
problems because of an underlying assumption that 
entropy can be used as a measure of phase correctness. 

Around the mid 1980's, there was a flood of 
optimism from ME specialists who were outside the 

crystallographic community that the phase problem 
should be readily solvable by available ME algorithms. 
Their approach is typified by Livesey & Skilling (1985) 
and is again combinatorially based: an electron-density 
map is generated from a set of known phases and 
subjected to constrained entropy maximization. In the 
language of this method, this map is the preferred map. 
Where the initial phases were to come from was not 
discussed but a subsequent paper (Gull, Livesey & 
Sivia, 1987) produced an ab initio solution of a small 
centrosymmetric structure, Cl0HlaCl704Sn. They claim 
that the resulting electron-density maps are 'of a very 
high quality, comparable or even superior to the 
conventional maps calculated from the refined phases'. 
As discussed in the previous section, the method they 
are using is quite inapplicable to most real problems 
because it ignores, and indeed cannot process, the 
branching problem. Gull et al. ignored the problem 
altogether. They looked at the strongest extrapolates 
(IUh~KI) and add these to the basis set in a stepwise 
fashion, which locks the calculation into a local entropy 
maximum from which it cannot escape (Gilmore, 
Bricogne & Bannister, 1990). There is a detailed 
account of what happens when you do this by Sudo, 
Hashizume & Carvalho (1995) when attempting to solve 
Mg3BN 3 from powder data in this way. 

Harrison (1989) overcame the branching problem to a 
certain extent (although it is always present) by creating 
a large basis set using conventional direct methods, and 
these were extended and refined by a ME algorithm. 
Two structures were solved here: one a small molecule, 
thiolysine, which is readily accessible to conventional 
direct methods, and the other an unsolved 15-base 
oligomer of DNA having 610 atoms in the asymmetric 
unit and diffracting to only 3 A. This is an impressive 
achievement but it does require initially reasonable 
phase estimates, which in this case come from direct 
methods and may often be difficult to obtain. It raises 
the question, however, as to why it has not been used 
subsequently as a general crystallographic technique. 

The first ab initio applications of the Bricogne 
formalism were in the MICE program, where two 
small organic molecules (both readily solvable by direct 
methods) were solved (Gilmore, Bricogne & Bannister, 
1990). It produced maps that were almost free of noise 
and that even resolved atom type in situations where 
oxygen was the heaviest atom, but it is no competition 
for conventional direct methods largely because of the 
computer time involved. However, when the data cease 
to satisfy the criteria of completeness and atomic 
resolution, the situation changes and this is the topic of 
the next three sections. 

4.5. Powder diffraction 

In powder diffraction, a three-dimensional diffraction 
pattern is collapsed into one dimension by spherical 
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averaging and, as a result, reflections that would 
otherwise be separately measured overlap. The degree 
of overlap increases with Bragg angle and unit-cell 
dimensions, thus often.reducing the effective resolution 
of the data set to 1.5 A or less - in many cases this is 
closer to 2 ,~. For reviews of the problems of structure 
solution from powders, see Shirley (1984) and 
Giacovazzo (1993). There have, however, been many 
successes in solving crystal structures ab initio from such 
data, especially when heavy atoms are present. [See, for 
example, McCusker (1988) and Morris, Harrison, 
Nicol, Wilkinson & Cheetham (1992). The latter deals 
with a 29-atom problem, albeit with Ga and P atoms 
present.] Synchrotron radiation with its high intensity 
and a highly collimated incident beam can be of great 
assistance in resolving overlaps experimentally, but 
many samples exhibit a large intrinsic line broadening or 
non-accidental overlaps can be present, so there is still a 
need for a systematic approach to this problem that is 
capable of utilizing overlap information in an active way. 

The ME approach to this problem is surprisingly 
quiet. Indeed, we can only refer to aspects of our own 
work. A suitable adaptation of the single-crystal 
approach has been formulated by Bricogne (1991c) 
and incorporated into the MICE program (Gilmore, K. 
Henderson & Bricogne, 1991; Shankland, Gilmore, 
Bricogne & Hashizume, 1993). In particular, all the 
intensity data are used in the normalization procedure 
and the log-likelihood gain is calculated using both 
overlapped and non-overlapped reflections. In addition, 
the latter can be included in the basis set as constraints 
for entropy maximization using the concept of hyper- 
octant phase permutation. The overlapped reflections 
can also be used in the final centroid maps so they play 
an active and often essential role in the entire phasing 
procedure The methodology was initially applied 
successfully to an inorganic salt, KAIP207, and a 
clathrasil, Sigma-2 (Gilmore, K. Henderson & 
Bricogne, 1991), then subsequently to unknown struc- 
tures LiCF3SO 3 (Tremayne, Lightfoot, GlideweU, 
Mehta, Bruce, Harris, Shankland, Gilmore & Bricogne, 
1992) and formylurea (Tremayne, Lightfoot, Harris, 
Shankland, Gilmore, Bricogne & Bruce, 1992), an 
inorganic salt, Mg3BN 3 (Shankland, Gilmore, Bricogne 
& Hashizume, 1993) and the organic molecule 1,3,4,6- 
tetrathiapentalene-2,5-dione (Lightfoot, Tremayne, 
Harris, Glidewell, Shankland, Gilmore & Bruce, 
1993). The latter two structures use good-quality 
laboratory diffraction data. For a more detailed review, 
see Shankland (1996). Recently, in my own laboratory, 
we have solved five zeolite structures quite routinely 
using this method (Gilmore, unpublished results). 

Finally, Takata et al. (1995) have studied the 
structure of the metallofullerene Y@C82 with synchro- 
tron powder diffraction. The results confirm that the 
yttrium atom is indeed in the C82 cage, but only partially 
ordered, and displaced from the cage centre. To 

confirm this, a ME map was generated using phased 
reflections from the model as constraints. This is not, of 
course, a model-free confirmation of the yttrium 
positions, since the phases were derived from a Rietveld 
refinement that included them but, nonetheless, the final 
maps were much easier to interpret using this technique. 
There is, we believe, a lot of mileage in using the ME 
method in conjunction with incomplete structural 
fragments. 

4.6. Electron diffraction 

Electron crystallography is a term used to describe 
crystal structure determination using electron diffrac- 
tion intensities either alone or in conjunction with the 
Fourier transform of the corresponding high-resolution 
electron-microscope images. In terms of intensity, 
electrons are scattered by matter c a  10 4 times more 
efficiently than X-rays (it is rather like having your own 
synchrotron!) and the technique has the potential to give 
structural data from crystals whose maximum dimen- 
sion is only 50nm, but there are problems with 
dynamical scattering, diffraction incoherence, radiation 
damage, sample preparation and the sparseness of the 
data sets produced. This has led some authors to 
question the whole viability of ab initio structure 
determination using electron crystallography. 
Vainshtein's book is the classic work on the subject 
(Vainshtein, 1964), but it is now superseded by an 
excellent new book by Dorset (1995) that is essential 
reading for anyone interested in the subject. There are 
also recent reviews by Vainshtein, Zvyagin & Avilov 
(1992) and Fryer & Gilmore (1992). After being 
something of the Cinderella of structure-determination 
methods, the methodology is currently enjoying a surge 
of activity thanks to Dorset's pioneering work (see, for 
example, Dorset, 1991a,b,c, 1993; Dorset & McCourt, 
1994) and research carried out by Fan and co-workers 
(see, for example, Fan, Zhong, Zheng & Li, 1985; 
Han, Fan & Li, 1986; Liu, Fan & Zheng, 1988). Dorset 
applies the techniques of traditional direct methods to 
the problems of ab initio structure determination, often 
using symbolic addition techniques or Sayre's equation. 
They prove surprisingly successful with this data, partly 
because the structures are small and partly because of 
the high degree of control of the process that his 
techniques provide. Fan, Zhong, Zheng & Li (1985) 
also employ traditional direct methods, including the 
use of Sayre's equation, which is found to exhibit the 
required stability (Liu, Fan & Zheng, 1988). However, 
the problem is ideal for the application of the ME 
methodology since, as we have seen, it is robust with 
respect to limited sampling of reciprocal space and to 
errors in the diffraction intensities. 

Instead of proceeding initially from a basis set that 
defines the origin (and enantiomorph, if relevant), it is 
possible to use phases obtained from the Fourier 
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transform of a suitable image instead. These are usually 
of low resolution and the images can be difficult to 
obtain but, nonetheless, their transform can often 
provide very useful additional phase information. In 
the case of macromolecular electron diffraction, these 
phases are, in general, essential for any successful 
phasing. 

4.6.1. The electron diffraction of small molecules. 
Again, the only ME applications in the literature come 
from our own research. The first is that of perchloro- 
coronene, C24C112, using only projection data down the 
c axis (Dong, Baird, Fryer, Gilmore, MacNicol, 
Bricogne, Smith, O'Keefe & Hovm611er, 1992). 
Experimental images were obtained at 3.2/~ together 
with a diffra(:tion pattern extending to 1.0A. The 
Fourier transform of the image yielded four phases, 
which were used as a basis set. Routine phase extension 
using ME procedures in MICE produced a map in which 
all the diffraction intensities are phased and whose 
resolution exceeds 1 A. As a check, there is a single- 
crystal X-ray diffraction study in the literature (Baird, 
Gall, MacNicol, Mallinson & Mitchie, 1988) and the 
electron diffraction result, although completely inde- 
pendent of the X-ray structure, produced a solution that 
was identical to it, at least in projection. 

Three-dimensional electron diffraction intensity 
data from diketopiperazine (2,5-piperazinedione, 
C4H6N202) were obtained from Vainshtein (1955). It 
is one of the most complete three-dimensional data sets 
ever collected from an organic crystal with 318 unique 
measured diffraction intensities. The space group is 
P2t/a with Z - - 2 .  The electrostatic potential maps 
produced by Vainshtein were based on these intensities, 
but he used the phases from an X-ray crystallographic 
structure determination to reveal the complete structure. 
These results were controversial, since it is well known 
that both electron-density and electrostatic potential 
maps are most sensitive to phase and not amplitude 
errors. (Indeed, even maps computed from unit 
structure factors with the correct phases will, in 
general, reveal the crystal structure.) However, Dorset 
has solved the structure ab initio using symbolic 
addition and found the positions of all the non-H 
atoms without recourse to the X-ray result. The ME 
method also solved the structure without difficulty 
(Gilmore, Shankland & Bricogne, 1993; Gilmore & 
Nicholson, 1996). The solution from a phasing tree with 
the highest likelihood gave an electrostatic potential 
which was virtually noise free with all the non-H atoms 
clearly resolved. Fig. 4(a) shows the likelihood- 
preferred map. 

A contrasting data set is provided by the electron 
diffraction data for CuCI2.3Cu(OH)2 (Voronova & 
Vainshtein, 1958). This crystallizes in the symmorphic 
space group P2/m with Z -- 1. The Cu atoms lie at the 
unit-cell vertices so there is a predominance of zero 
phase angles, which makes it difficult to locate the 

remaining Cu, C1 and O atoms. In addition, the 
sampling of reciprocal space is much less complete 
than for diketopiperazine with only 124 measured 
intensities available. The structure was originally solved 
using Patterson methods. With MICE, a simple cal- 
culation gave an electrostatic potential of remarkable 
clarity: all the non-H atoms are clearly visible despite 
the dominant features of the Cu atoms. Only the Cl 
atoms are rather weakly indicated (see Fig. 4b). 

Voigt-Martin, Yan, Gilmore, Shankland & Bricogne 
(1994) have used MICE to solve the unknown structure 
of 4- [4-(N,N-dimethylamino)benzylidene]pyrazolidine- 
3,5-dione at 1.4A in projection using 42 reflections. 
There is an excellent agreement between the solution 
and independent model-building and high-resolution 
electron-microscopy studies. In a very similar way, 
Voigt-Martin, Yan, Yakimansky, Schollmeyer, Gilmore 
& Bricogne (1995) have solved the structure of 
[9,9'-bianthryl]-10-carbonitrile using 150 unique dif- 
fraction intensities, and independently verified the result 
with model building and image simulation techniques. 

We have also studied other structures with the same 
level of success, which leads us to concur with Dorset 
that the technique of ab initio structure solution using 
electron diffraction data has a general viability even 
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when heavy atoms are present and offers a direct 
challenge to powder diffraction methods. We also quote 
Zandbergen & Cava (1995): 'We anticipate that within 
a few years quantitative electron diffraction . . .  will 
provide a quick way to determine crystal structures 
from small crystallites'. The method had come of age, 
and the maximum entropy method, properly formu- 
lated, has a major role to play. 

4.6.2. Electron microscopy - improving image data. 
Our main interest in this review is diffraction. 
However, as we have already observed, an electron- 
microscope image can be a useful source of phase 
information via its Fourier transform. It follows that 
any image improvement will translate into a corre- 
sponding enhancement of the phase information. 
Furthermore, since much of the problem here is 
concerned with extracting a signal from a noisy 
background, the problem should be accessible to 
traditional ME methods. The literature, however, is 
surprisingly sparse. 

Frieden (1988) has applied ME image reconstruction 
techniques to electron-microscopy images. He con- 
cludes: 'Anyone can produce a notable gain in 
resolution simply by inverse-filtering the image. The 
trick is to somehow avoid the excessive oscillations that 
. . .  naive approaches will produce . . . .  Choices are, by 
their nature, personal, but I have not seen any other 
algorithms achieve the quality of output that these [ME 
and median window] produce.' He also considers that 
ME prefers point and line sources and gives some nice 
examples, including a deliberately misapplied ME 
image restoration. Non-periodic images are also studied 
by Farrow & Ottensmeyer (1988); the ME image- 
restoration method suppresses artefacts without remov- 
ing high-frequency components in the image but the 
situation is rendered somewhat artificial by the use of 
model Gaussian noise in the trial data sets. 

Anderson, Martin & Thomas (1989) exploit the 
periodic nature of the image (both Frieden and Farrow 
do not) using ME methods and avoid conventional 
Fourier filtering. They have applied it to a number of 
small-molecule films including poly{ (benzo[ 1,2-d:4,5- 
d']bisthiazol-2,6-diyl)-l,4-phenylene}. In all cases, the 
periodicities are clarified dramatically and show a 
considerable improvement over conventional Fourier 
filtering. 

There is much exciting work to do in this field; 
advances could greatly increase the power of the ME 
method when used as a source of phase information for 
the ab initio solution of crystal structures whether small 
or large. 

4.7. Fibre diffraction 

Once again, the literature is sparse. This is a pity; one 
can view fibre diffraction as lying midway between 
powder and single-crystal diffraction in terms of the 

information it gives. For a good review of the method, 
see Millane (1988). Given the successes of the ME 
formalism in other areas, it seems obvious that this 
could be a fruitful area for further development. The 
combination of entropy maximization and likelihood 
evaluation is clearly applicable here and Bricogne 
(1991c) has derived much of the necessary theory, but 
it has not been explored further in a practical way. 

One outstanding achievement, however, must be 
described: the Pfl Inovirus calculations by Marvin, 
Bryan & Nave (1987), which follow an earlier report by 
Bryan, Bansal, Folkhard, Nave & Marvin (1983). They 
used an ME algorithm to calculate electron density 
distributions on the native virus data extending to 3 A 
and on a single isomor.phous derivative using iodine 
with a resolution of 5 A. The initial structure of the 
virion was determined at low resolution by direct 
interpretation of the intensity distribution of the fibre 
diffraction coupled with model building. Phase exten- 
sion was then carried out by ME methods. No phasing 
trees were built, so presumably the branching problem 
was considered unimportant. The authors recognize 
this, since there is an enantiomorph definition which 
takes place implicitly, and perhaps by accident, in the 
procedure. Nonetheless, the final results are convincing 
and, given the nature of the data, something of a 
triumph: no other statistical method could have 
processed this data. In addition, Gonzales, Nave & 
Marvin (1995) have used ME to a much lesser extent in 
a study, of the Pfl filamentous bacteriophage fibre data 
at 3.3 A resolution. They calculated a ME map using the 
native data and a model derived from constrained 
simulated annealing, then used this with iodine- 
derivative data to generate another ME map, which 
revealed the iodine positions. Given these successes, we 
must therefore ask why ME methods are not more used 
in fibre diffraction? 

4.8. Protein X-ray crystallography 

There has been much more activity here than with 
fibres, which is a reflection of the global activity of the 
field and the huge potential gains to be made by 
developing new phasing techniques for macromole- 
cules. Indeed, some of the earliest applications of the 
ME method were made in the area of protein crystal- 
lography. For a review of recent activity in protein 
phasing methods, see Gilmore (1992). 

Collins's early°work (Collins, 1982) studied phase 
extension from 2 A MIR phases to 1.5 A for rubredoxin 
A, a small protein. Two years later, Bricogne (1984) 
demonstrated phase extrapolation in the small protein 
crambin using experimental data coupled °with correct 
phases starting at 3 A and extending to 1.5 A. Both these 
instances are problems that cannot be tackled with 
conventional direct methods and both authors demon- 
strated the process was stable at these resolutions. It was 
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already clear in this early stage of its development that 
the methodology was of some potential importance. 

There are two surveys by Bryan (1988, 1989) that 
discuss possible strategies for SIR, unknown heavy- 
atom positions and phase extension in macromolecular 
crystallography. These papers give a good account of 
the problem coupled with applications mostly using 
model data. Most interesting, however, is an attempt 
with a small molecule to incorporate structural informa- 
tion into the phasing at a much earlier stage than usual, 
using triple correlations of atomic coordinates. The 
whole question of incorporation of such prior knowl- 
edge is of fundamental importance - finding a practical 
way of doing this would be a major and possibly 
essential advance in the techniques of solving large 
structures ab initio. The SIR problem is further 
discussed by Bryan & Banner (1987) but they use 
entropy as a criterion of phase choice (see ~4.10), which 
must limit its applicability. 

As we discussed in §2, one of the benefits of ME 
is its ability to incorporate many different constraints, 
not just those of amplitude and phase, and this is 
vital in macromolecular crystallography where the 
most obvious additional constraint is that of the 
envelope or mask in conjunction with solvent 
flattening. Prince, Sj61in & Alenljung (1988) 
described an algorithm for doing this with a test on 
native ribonuclease A and an application to two 
previously unknown structures, bovine prothrombin, 
in which initial phases were obtained from MIR data, 
and fragment TR2C from bull testis calodulin. There 
is a more detailed description of the latter in Sj61in, 
Svensson, Prince & Sundell (1990). In the latter 
case, there are two molecules in the asymmetric unit; 
the first was found by molecular replacement and the 
second located using the ME-envelope solvent-flat- 
tening combination. MICE has also been adapted by 
Xiang, Carter, Bricogne & Gilmore (1993) to use an 
envelope and solvent flattening to bring about 
substantial model-free map improvement at 3.1A 
resolution for cytidine deaminase. Fig. 5 is a graphic 
demonstration of the improvement in the mean phase 
error that was achieved when compared with 
conventional methods. 

There are major differences in these two approaches: 
Prince and co-workers maximized the entropy of the 
maps after conventional solvent flattening by fitting the 
entire data sets exactly (i. e. giving a reduced X 2 -- 0.0). 
Carter et al., however, included the envelope as a prior 
in the entropy maximization from the very beginning, as 
well as monitoring the behaviour of the LLG as the 
entropy maximization proceeded, stopping when it 
reached a maximum, and hence optimum, value. This 
prevents the building up of spurious detail in the maps 
that will inevitably occur by overfitting the basis set data 
when they are used as constraints. Carter's conclusion 
is that the use of ME in this way is 'a superior way to 

improve isomorphous replacement electron-density 
maps before model building.' 

There is a growing body of evidence to support this. 
Recently, for example, Lapthorn et al. (1994) used 
MICE in a non-tree-building mode, but with the 
inclusion of the envelope constraint, to improve maps 
for the hCG structure; the improvement made a 
significant contribution to the modelling of some of 
the loops in the protein. The fact that this is a model- 
free method is important: it minimizes the accumulation 
of error in the whole phasing process. 

All the above have assumed that there is no significant 
branching problem, and therefore no need to carry out 
any phase permutation. Carter and co-workers have 
examined a problem where this is not the case and used 
an adapted version of MICE to solve the previously 
unknown TrpRS structure (Doubli6, Xiang, Gilmore, 
Bricogne & Carter, 1994; Doubli6, Bricogne, Gilmore 
& Carter, 1995). In this case, there were serious 
problems with a lack of isomorphism, and a poorly 
known molecular envelope exacerbating all the usual 
problems. These were overcome in a novel way: 

(i) Strong reflections for which there were only weak 
or contradictory phase indications were given permuted 
phases. 

(ii) Different envelopes were tried and analysis of the 
LLG used to decide on the correct mask. 

(iii) In a structure of this size, phase permutation can 
lead to huge phasing trees and a corresponding 
computational explosion. To overcome this, incomplete 
factorial designs (i.f.d.'s) were used [see Carter & Yin 
(1994) for a recent discussion of i .f .d. 's in the context 
of crystallization], which greatly reduce the number of 
nodes needed for a given permutation experiment but 
still allow the selection of the correct phases by an 
appropriate use of significance testing. The result was a 
successful structure solution of an unknown protein and 
probably the most significant demonstration of the 
power of the formalism to date. 

Another benefit of the ME method is the relatively 
easy way in which other constraints such as non- 
crystallographic symmetry (n.c.s.), partial structures, 
isomorphous structures etc. can be built into the 
calculations (Bricogne, 1988a,b, 1992); some applica- 
tions of n.c.s, are described in ~4.9. 

Attempts to solve protein structures ab initio take us 
into a whole new world, but before we look at the few 
results that there are, we should make it clear what ab 
initio means in this context, since some authors have 
shown a tendency to re-define the problem into one that 
is much more tractable. Ab initio macromolecular 
structure determination is precisely what it is in the 
small-molecule case - the solution of a crystal structure 
from its native data with no prior knowledge other than 
the chemical formula. Thus, structures solved using 
phases derived from SIR or MIR experiments are not 
true ab intio structure solutions. 
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The most ambitious result here comes from Sj61in, 
Prince, Svensson & Gilliland (1991), who claim to have 
solved the 323-residue protein bovine chymosin, 
previously solved by standard techniques. They 
employed a fractional factorial design to permute phases 
(a method not unlike the use of codes or incomplete 
factorial designs, but less efficient in its covering of 
phase space). Centric phases were used initially and the 
phase indications were extracted using Yates's algo- 
rithm with entropy employed as a measure of phase 
correctness and to control the branching. Several layers 
of a phasing tree were carried out in this way and the 
resulting maps look very convincing, but here are some 
questions concerning this approach: 

(i) Entropy cannot be used as an indicator of phase 
correctness (see ~4.10). 

(ii) The test of significance quoted in this paper 
(Table 1 of Sj61in et al., 1991) do not give any phase 

indications with a significance level lower than 20%, 
and of these over half are incorrectly indicated (Carter, 
unpublished results; Bricogne, unpublished results). 

The use of designed experiments, i.e. the fractional 
factorial design, is a significant advance, however, and  
this was the first published application of such a method 
in a ME environment. 

Avian pancreatic polypeptide (App) is a small protein 
(Glover, Haneef, Pitts, Wood, Moss, Tickle & 
Blundell, 1983) made somewhat unusual by the 
availability of good 1A data. It is used as a test 
structure by direct methods practitioners interested in 
developing techniques of phasing protein structures. 
MICE has been used to identify best phase sets for App 
from those generated by the SAYTAN direct methods 
computer program working at only 2]k resolution 
(Gilmore, A. N. Henderson & Bricogne, 1991). In 
this study, sets of phases from SAYTAN derived from 
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1 ,~, data could not be ranked by any conventional figure 
of merit, but they were passed to MICE using only the 
2,~, data. Each phase set was subjected to constrained 
entropy maximization coupled with likelihood evalua- 
tion; the sets with minimum phase error (around 45 ° ) 
were clearly indicated by the LLG estimate. No other 
figure of merit could work so well with this level of 
complexity at this resolution, confirming in a crystallo- 
graphic environment a famous theorem by Neyman & 
Pearson (1933a,b) (see also Edwards, 1972, ch. 9) that 
establishes likelihood as an optimum criterion in 
statistical inference more powerful than any other. 

App contains one Zn atom per asymmetric unit, the 
position of which is not particularly difficult to locate at 
1 A, but Gilmore & Nicholson (1996), using only the 
3 A data, have show the Zn atoms can be readily located 
to within 0.5 ,~, of their refined positions ab initio using 
a combination of entropy maximization, likelihood and 
coding. For a structure of this complexity, there is a 
large increase in the number of reflections that need to 
be phased to produce an interpretable map; this, in turn, 
leads to a proportional increase in the size of the phasing 
tree to the point where it can become computationally 
unrealistic. However, Bricogne (1993) has shown that 
this problem can be overcome by the use of error- 
correcting codes. It is not possible or appropriate to 
discuss this vast subject here. Hill's book (Hill, 1991) 
provides a simple introduction and two classic but more 
advanced volumes are those by MacWilliams & Sloane 
(1977) and Conway & Sloane (1993). Their use enabled 
the Zn atoms to be located ab initio at 3 A in a routine 
way, involving a three-level phasing tree with over 
8000 nodes, although the calculations took less than 24 h 
on a network of modest Unix workstations. The use of 
codes is likely to become a key advance in the use of 
ME in protein phasing. 

Finally, Bricogne has published some interesting test 
results in an attempt to solve crambin ab initio at 1.5 
resolution using the BUSIER program (Bricogne, 
1993). Both Roth (1991) and Schluenzen, Volkmann, 
Thygesen, Hansen, Harms, Bennett & Yonath (1994) 
have reported work on a large ribosomal subunit from 
Thermus thermophilus at low resolution using MICE. 

4.9. Protein electron crystallography 

Electron diffraction techniques can also be applied to 
biological macromolecules. In this case, an ab initio 
phase determination is not practical because of the 
structural complexity of the molecules. However, 
instead of proceeding from a basis set that defines 
only the origin and enantiomorph, the phases of the 
basis set reflections can be obtained from the Fourier 
transform of a suitable image. Such phase information 
is usually of relatively low resolution and the practical 
problems of obtaining such image data for macro- 
molecules are considerable. The electron diffraction 

data are, however, more easily obtained and have a 
much higher resolution than the images. The problem 
then arises as to how to phase the diffraction data 
starting from the lower-resolution image transform 
phases when processing macromolecule data. The ME 
method is ideally suited to this problem but, again, the 
only published work in this field is our own. 

We have presented trial applications to the two- 
dimensional purple membrane data from Halobacterium 
halobium (Henderson, Baldwin, Downing, Lepault & 
Zemlin, 1986; Baldwin, Henderson, Beckman & 
Zemlin, 1988), showing that it is possible to produce 
good phase extrapolation sta.rting with basis sets having 
a resolution as low as 15A (Gilmore, Shankland & 
Fryer, 1992, 1993). 

Cholera toxin is the protein responsible for the 
clinical symptoms of cholera. It consists of five B 
subunits, each of which has molecular weight 
10600Da, and one A subunit composed of two 
polypeptides A 1 and A 2 of molecular weight 23 500 
and 5500Da,  respectively. The five B subunits are 
arranged in a pentameric ring around the central A core, 
exhibiting five fold non-crystallographic symmetry 
(Brisson & Moser, 1991). We have been working 
with a two-dimensional data set from a sample crystal- 
lized in two dimensions on lipid layers in which 56 
unique image-derived phases were available at 8.8 ,~ 
resolution plus 1417 diffraction intensities extending to 
4 ,~. The problem is to phase the 4 ,~ data from the 56 
known phases imposing fivefold non-crystallographic 
symmetry (n.c.s.) and solvent flattening, while working 
wholly with projection data. 

Hitherto, we have been using likelihood as an 
indicator of phase choices and envelope definition, but 
it is of course a general technique of statistical 
inference. Accordingly, in the cholera toxin case we 
have successfully tested the likelihood criterion as an 
accurate and reliable predictor of: o(i) the effective 
number of atoms in the unit cell (at 4 A this is not equal 
to the number of atoms in the cell); (ii) the centroid 
coordinates for the fivefold non-crystallographic axes; 
(iii) the envelope radius; in the presence of known phase 
information from the image data. We have used these 
results to carry out phasing extension on cholera toxin. 
The first results are very encouraging (Gilmore & 
Nicholson, 1996). 

4.10. Is entropy a viable indicator of phase correct- 
ness ? 

The short answer is no, but further amplification is 
obviously needed: 

(i) Naively, there is no reason why entropy should be 
such an indicator. Entropy can be considered a measure 
of map flatness; there is no reason why the correct map 
among many possible maps each with different phases 
but the same amplitudes should be the flattest. 
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(ii) Lemar6chal & Navaza (1991), in a critique of 
Sj61in, Prince, Svensson & Gilliland (1991), give 
arguments concerning the phases assigned to the 
Lagrangian multipliers used in the entropy maximiza- 
tion (see §7 for further details of the use of Lagrangian 
multipliers) to demonstrate that entropy cannot be used 
as a reliable figure of merit. There is an additional 
discussion by Navaza (1991). 

(iii) Gilmore, Bricogne & Bannister (1990), 
Gilmore, K. Henderson & Bricogne (1991), 
Gilmore, A. N. Henderson & Bricogne (1991), 
Shankland, Gilmore, Bricogne & Hashizume (1993) 
and Sudo, Hashizume & Carvalho (1995) all give 
examples where the use of entropy in this way is 
disastrous. McLachlan (1993) also cites examples 
using data from the membrane protein bacterio- 
rhodopsin. 

(iv) Sato (1992), however, disagrees and claims that 
entropy is a valid indicator for data sets of resolution 
greater than 1.5 A, but in this case he is working with 
very large basis sets of accurate phases extracted from a 
refined small-molecule structure, CIoHI3NsO3 . 

Is it a question of resolution: can entropy work as 
a figure of merit at low resolution where one 
expects maps free of large peaks? Entropy is a 
measure of map flatness, so should perhaps be able 
to select the 'best' ones. The trouble here is that 
density builds quite quickly even at low resolution. 
To demonstrate this, Table 1 presents a simple one- 
level phasing tree for halorhodopsin using electron 
diffraction data from Havelka, Henderson, Heymann 
& Oesterhelt (1993). At 15A, it can be seen that 
LLG is an excellent indicator of phase correctness 
whereas entropy is simply incorrect. 

Likelihood, in our experience is the optimum 
figure of merit to use in this environment. Entropy 
can be included by using N S + L L G  (S is the 
entropy), but there are problems here with the 
definition of N, which cannot be simply equated 
with the number of atoms in the unit cell. There is 
a summary of a discussion on this matter at a 
conference on Direct Methods of Phasing in 
Macromolecular Crystallography in Florida, USA, 
in 1992 by Sayre (1993), which defines the 
controversies on these points quite succinctly. 

4.11. The phase problem: some conclusions 

We believe the ME and Bayesian methods have 
the power and potential to transform whole areas of 
the phase problem in crystallography. Properly used, 
they provide a wholly consistent statistical formalism 
for dealing with all aspects of phasing. Practical 
progress may seem very slow but few people are 
working in this area and there is a huge body of 
well established theory still waiting to be pro- 
grammed and tested. Remember how long it took 

Table 1. Is entropy a good figure of merit at low (15,~) 
resolution ? 

A simple l-level phasing tree for halorhodopsin data using a 15 ,~ 
basis set. It can be seen that the LLG is the optimum indicator of phase 
error in the basis set, and that the maximum entropy solutions have 
high mean phase errors. 

Node Mean phase 
no. LLG Entropy error (°) 

1 0.787 -0 .027  18.8 
2 -0 .095 -0 .023 69.3 
3 0.000 -0 .026  58.5 
4 0.472 -0 .023 127.3 
5 -0 .034  -0 .025 103.9 
6 0.050 -0 .025 99.5 
7 0.076 -0 .025 88.7 
8 -0 .014  -0 .024 139.2 
9 -0 .042  -0 .026 43.6 

10 0.061 -0 .024  94.1 
11 0.065 -0 .025 83.2 
12 -0.001 -0 .024  133.8 
13 0.775 -0 .027  73.8 
14 -0 .087  -0 .024  124.3 
15 -0 .012  -0 .026  113.4 
16 0.494 -0 .023 164.0 
17 0.810 -0 .027  0.0 
18 -0 .035 -0 .023 50.5 
19 -0 .066  -0 .026  39.7 
20 0.501 -0 .023 90.2 
21 0.058 -0 .026  30.2 
22 0.080 -0 .024  80.7 
23 0.043 -0 .025 69.9 
24 -0 .063 -0 .024  120.4 
25 0.050 -0 .025 24.8 
26 0.092 -0 .024  75.3 
27 0.033 -0 .025 64.5 
28 0.033 -0 .025 115.0 
29 0.796 -0 .027  55.0 
30 -0 .026  -0 .023 105.5 
31 -0 .079 -0 .026 94.7 
32 0.513 -0 .023 145.2 

direct methods to become established from the initial 
theory papers. In the past year, applications to 
unknown protein structures have begun to demon- 
strate significant success, which should inspire 
confidence and further development. A major 
advance would be the ability to incorporate known 
structural information into the calculations from the 
very beginning. The Bayesian formalism is ideal for 
this, but how can it be done? There is a growing 
body of feeling that this is a necessary minimal 
prerequisite for the ab initio solution of even 
relatively small protein structures - solving larger 
structures in this way is, as yet, an unattainable 
goal. 

In macromolecular electron microscopy, we pose a 
question: Given the problems of obtaining high-resolu- 
tion phase information from image data, would it not be 
better to concentrate instead on lower-resolution 
images, then use the high-resolution diffraction 
intensities, phasing them via ME phase-extension 
procedures? 
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5. Accurate charge and spin densities 

5.1. Single-crystal diffraction data 

We are concerned here with the determination of 
accurate charge densities. For a review of current 
conventional techniques in the field, see Koritsansky 
(1993). Given a solved structure with high-quality data 
techniques such as high-order refinement, the aspherical 
atom formalism, static deformation and deformation 
densities are used to obtain bonding densities. It is an 
obvious extension of the previous sections of this review 
to ask if maximum entropy or Bayesian methods can be 
of value here given the inherent lack of bias in the ME 
maps, the imposition of positivity of density, smoothing 
and the ability to extend resolution beyond that of the 
measured data. 

Sakata & Sato (1990) have studied the charge density 
in Si in this way, using a full set of phased data as 
constraints in an entropy maximization, with careful 
determination of the data scaling factor using the 
Pendellfsung method (Saka & Kato, 1986). Following 
Collins methodology (Collins, 1982), they computed a 
ME map including all 30 phased reflections but 
excluding the forbidden reflections, which in Si arise 
from the asphericity of the electron density, which is 
itself a consequence of bonding electron density and 
anharmonic thermal motion of the Si atoms. They also 
carried out a calculation in which one reflection was 
used to define the origin, as required by the space 
group, and the remaining unphased reflections were 
included as constraints using only their amplitudes. This 
is, of course, a model-free reconstruction of the electron 
density. In both cases, the final maps were deemed 
identical and showed electron density in the expected 
bonding regions. They conclude that the ME method: 
'will be very useful in accurate structure analysis, 
because it is a model free analysis, it can yield very high 
resolution on a density map provided that data are 
sufficiently accurate, and it may work without phase 
information.' However, it is only 'model free' in the 
simplest of cases; for most structures, the phase 
problem will need to be solved first. Schotte, Schotte, 
Bleif & Papoular (1995) have examined KOH, NaOH 
and NaOD via neutron diffraction looking at the 
distribution of density around the H atoms, and 
conclude that a naive approach to using ME in this 
way is unsatisfactory, and that a suitable non-uniform 
prior is required. This seems to the author to be a 
logical requirement of the use of entropy in this field, 
and is discussed further in §5.4 with reference to spin 
densities. Kumazawa, Kubota, Takata & Sakata (1993) 
have produced a computer program, MEED, for 
electron density calculations that follows the formalism 
described by Saka & Kato. 

Jauch & Palmer (1993) have cast grave doubts 
about this whole approach. They have applied the ME 
method to accurate y-ray diffraction data for MnF 2 

and NiF 2 as well as the Si PendellSsung data of Saka 
& Kato. Their conclusions may be summarized as 
follows: 

(i) A constraint function based on X 2 can be very 
misleading. In MnF 2, 45% of the constraint function 
arose from one low-order reflection, so there is a highly 
non-random contribution from individual reflections in 
the entropy maximization. 

(ii) ME emphasizes any sharp features. 
(iii) Smooth features in low-density regions are 

contaminated with spurious artefacts. 
They conclude: 'Obviously a ME analysis does not 

provide a suitable alternative to lease squares refine- 
ments relying on elaborate physical models.' 

Jausch (1994) has pursued this matter further, 
pointing out, quite correctly, that ME is being used 
not as a tool of statistics (where it surely belongs) but 
as a map smoothing, or regularizing, function. The 
smoothing is, of course, always present in the method 
but is only a by-product and not the basic rationale. 
One consequence of this is that ME maps are 
susceptible to exhibiting spurious detail similar to 
those inherent in Fourier inversion except that 
positivity is ensured. There is also a further criticism 
by de Vries, Briels & Feil (1994). They note that the 
ME property of producing the flattest electron density 
consistent with the data causes the calculated values 
of the strong reflections to deviate systematically as 
much as possible from their measured values. They 
also point out that the method does deal with series 
termination errors quite well and they introduce a 
weighting scheme that minimizes artefact production 
but, nonetheless, as they clearly demonstrate, spu- 
rious detail is still present and peaks at atomic centres 
are much too sharp. 

From both our experience with ME maps and the 
same theoretical considerations, we agree with all these 
reservations. We would also emphasize a further point: 
all the reported calculations in this field use a uniform 
prior. This allows any unfitted electron density to be 
distributed as uniformly as possible in the unit cell by 
the ME calculations. We know that, physically, this is 
not true - the unfitted density should accumulate in the 
relevant bonding regions. At the very least, a non- 
uniform prior that will do this is required, but this 
cannot be properly defined without knowledge of the 
answer. However, the ability of the ME method to carry 
out limited super-resolution, the positivity and smooth- 
ness it imposes and its inherent lack of bias if correctly 
used make it an obvious tool for electron density 
studies. What is needed are some rigorous studies and 
comparisons with accurate multipole refinement, with 
the realization that the ME formalism is no substitute 
for accurate measurements and detailed careful refine- 
ments, nor can it compensate in full for series 
termination effects: it de-emphasises but does not 
remove them. 
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5.2. Powder diffraction data 

The problem becomes even more acute when powder 
data are considered. Sakata, Uno, Takata & Mori 
(1992) have applied the ME method to rutile (TiO2) 
using accurate long-scan powder diffraction data. This 
structure had previously been studied by single-crystal 
deformation-density methods by Restori, Schwarzen- 
bach & Schneider (1987). One of the attractions of 
using powders in this context is that extinction ceases to 
be a serious problem. Sakata et al. report bonding 
density in the T i - -O  bonds but none in the Ti - -Ti  
bonds, which is in partial agreement with single-crystal 
studies. Kumazawa, Takata & Sakata (1995a,b) have 
further studied thermal motion in rutile starting with a 
model obtained from neutron powder diffraction. From 
the nuclear density distribution, they obtained an 
anharmonic thermal model parameterized to fourth 
order. The starting model here comes from a maximum 
entropy nuclear density map derived from the experi- 
mental data. 

Nakahigashi & Higashimine (1995) have studied 
a-tin using two overlapped sets and 11 non-overlapped 
reflections and claim that the bonding density between 
the adjacent Sn atoms in the (110) plane can be clearly 
seen. However, if the single-crystal ME method is open 
to criticism, the problem must be exacerbated in the 
powder case, where data by their very nature are likely 
to be inferior, with the usual problem of peak-profile 
fitting and overlaps, although for very simple situations 
this may not be too important. 

5.3. Surface densities 

If powder diffraction is controversial in the context of 
electron densities, then surface diffraction poses even 
greater problems: the data are difficult to obtain, are 
incomplete to avoid reflections where the bulk solid 
contributes and there may well be errors in the model. 
Not deterred, Carvalho, Hashizume, Stevenson & 
Robinson (1966) have produced electron density maps 
for the S i ( l l l )  7 x 7 surface using both X-ray and 
electron diffraction. They find no electron density 
between the atoms because of problems with data 
quality. It would be a major advance to see surface 
densities and one can therefore expect more research in 
this field to appear, perhaps for simpler surfaces. 

5.4. Spin densities 

Some significant and very interesting work has been 
carried out in the area of spin densities by Papoular and 
co-workers (Papoular & Gillon, 1990; Papoular & 
Delapalme, 1994; Papoular, Zheludev, Ressouche & 
Schweizer, 1995). In this method, one uses polarized 
neutrons to derive ME reconstructions of spin densities. 
Experimentally, a periodic spin density is induced in a 
single-crystal sample by applying a strong magnetic 

field via a cryomagnet at low temperature. Experi- 
mental problems arise from the use of a cryomagnet in 
which the applied field is in the vertical (z) direction. 
Since the diffracted-beam detector is also in the 
horizontal plane, it may be lifted up from the plane, 
but only by a small amount because of the equipment 
construction and design. The net effect is that reciprocal 
space is sampled only in a few layers; thus, if the crystal 
is mounted with the c axis vertical then only hkO, hkl ,  
hk2 and hk3 flipping ratios may be measured. Resolu- 
tion along the h and k directions is not so restricted. To 
reconstruct spin densities to high resolution in any 
projection is then the problem. It is not unlike the 
sampling problem in electron crystallography using 
tilted samples. 

The ME method is very well suited to such 
tomography problems. Recently, Papoular et al. 
(1995) have used ME as a regularizing function to 
produce some impressive results. This is demonstrated 
with the PNN crystal - a phenyl-substituted o~-nitroso- 
nitroxide - which is shown in Fig. 6(a). The compound 
is paramagnetic owing to an unpaired electron, which is 
in arr* molecular orbital. To find out how the spin 
density is distributed in the molecule, a single-crystal 
polarized-neutron diffraction experiment was per- 

0 D 

0 • 
(a) 

(b) 
Fig. 6. (a) The structural formula of PNN. (b) Spin density in a PNN 

crystal projected orthogonally onto the O--N--C--N--O 
molecular plane reconstructed by 3D ME from 187 Fourier 
coeffcients. 0.0125/zs,~, -1 contours. (From Papoular, Zheludev, 
Ressouche & Schweizer, 1995.) 
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formed. The three-dimensional ME reconstruction is 
shown in Fig. 6(b). It is highly convincing, although a 
conventional map is not shown for comparison. 
Zheludev, Papoular, Ressouche & Schweizer (1995) 
have extended their method significantly by the use 
of non-uniform priors. In an application to 
[TCNE]-[Bu4N] +, the use of an appropriate prior 
gave impressive results. The problem of spin densities 
is less difficult and contentious than the prediction of 
accurate electron densities because there is less 
susceptibility towards producing spurious artefacts, 
and we are not requiring super-resolution in more 
than one direction; the ME method should therefore 
become the technique of choice, especially when non- 
uniform priors are used. 

6. Particle sizes from diffraction experiments 

6.1. Small-angle scattering 

Small-angle scattering (SAS) techniques are subdi- 
vided into small-angle X-ray scattering (SAXS) and the 
neutron equivalent (SANS). They provide a direct way 
of obtaining particle size information from mono- 
disperse and polydisperse solutions. For a brief survey 
of the method, see Glatter (1992), and for a detailed 
monograph see Feigin & Svergun (1987). In a SAXS 
experiment, a set of M scattering intensities, /j, are 
measured as a function of increasing incident X-ray 
angle, 0. The experiment operates at very low 0 values. 
From such an experiment, we obtain a distance 
distribution function p(r) via the relationship 

l(q) = ~f p(r)S(q, r) dr, (33) 
0 

where q = 4zr sin 0/2, 0 is the incident angle, 2 is the 
radiation wavelength and S(q,r)  depends on the 
assumed particle shape. For example, for a sphere of 
radius r, 

S(q, r) = N(p  - ps)[3(sin qr - qrcos qr)]2/(qr) 6, (34) 

where p and ps are the scattering-length densities of the 
particles and solvent, respectively, and N is the number 
of particles per unit volume. 

In practice, p(r) may not be uniquely determined 
because: (i) the observations are subject to experimental 
error; there are random errors generated from counting 
statistics, and smearing arising from instrument resolu- 
tion; (ii) experimentally, we only sample M points of 
l(q): 

r 

lj(q) = f p(r)Sj(qr)dr, j -  1,2 . . . . .  M, (35) 
0 

and there is a limit on how fine this sampling can be, 
imposed by the experimental constraints in (i). Standard 
techniques to extract a feasible solution for p(r) use data 
smoothing, interpolation and model functions, all of 

which have the potential of introducing errors and 
biases into the solution, so SAXS is an obvious 
candidate for ME methods. In SANS, there is negative 
contrast and, in consequence, the associated probability 
distributions measured the probability of finding density 
lower than the solvent, but the methodology is similar. 

The literature is not extensive but it is all interesting, 
although the approaches are not dissimilar, differing 
only in detail. Potton, Daniell & Rainford (1988a) 
looked at particle size distributions from SANS data via 
ME using a uniform prior and developed an algorithm 
that successively generates trial structures and subjects 
them to entropy maximization using the Skilling 
algorithm (see §7.3), which is well suited to this 
purpose (Skilling & Bryan, 1984). The fit between 
observed and calculated intensities is measured by the 
traditional ) 2 statistic, thus maintaining a suitable lack 
of fit that incorporates experimental errors. This paper 
deals only with model data in which experimental noise 
is modelled via random errors having a suitable 
Gaussian distribution and so, although the conclusions 
are encouraging, they are by no means definitive. 
However, it is always sound to start a new approach to 
problems of this sort with simulated data, and, in a 
subsequent paper (Potton, DanieU & Rainford, 1988b), 
the authors study the annealing of stainless steel at 
different temperatures, again using SANS technology. 
The results correlate well with those from traditional 
data-processing methods, throwing up no unexpected 
surprises. 

Hansen & Pedersen (1991) examine the ME method 
in SAXS comparing its efficacy against two conven- 
tional approaches based on indirect Fourier transform 
methods that use least-squares and various interpolation 
procedures, and employing both real and simulated 
data. The conclusions are those that one would expect: 
there is a lack of spurious artifacts and oscillations, and 
a reduced sensitivity to prior assumptions concerning 
particle size and shape when the ME method is 
employed. Scattering profiles are also sharpened. 
Morrison, Corcoran & Lewis (1992) give a very 
detailed account of the ME method, again using the 
Skilling MEMSYS package, on simulated and real data 
looking especially at bi- and trimodal distribution 
functions p(r). With real data, which are the main 
topic of interest here, results are presented for 
poly(ethyl acrylate) of concentration 3% in D20, 
which is proposed as representative of a typical polymer 
latex, and for a siloxane-ethoxy copolymer also in D20. 
The results correlate well with alternative approaches, 
but very polydispersive intensity distributions are 
problematic. This is not the fault of the method but a 
consequence of the nature of the scattering equations for 
such systems. Steenstrup & Hansen (1994) have used a 
variant of the ME method to determine p(r) from (33), 
in which the positivity constraint is relaxed to determine 
p(r) using both simulated and experimental data, the 
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latter using sodium docecylsulfate in solution. These 
results are also encouraging. Finally, Hansen & Wilkins 
(1994) have used simulated SAXS data for cytochrome 
c to develop ideas of error propagation in the ME 
approach. A non-uniform prior is used into which 
uncertainties are incorporated and these errors are 
allowed to propagate along with the data variances 
through to the final distribution functions. With this 
simulated data, the results look convincing; in addition, 
they suggest possible extensions to crystal structure 
determination by selectively weighting the prior maps to 
reflect a degree of belief in their accuracy. 

6.2. Crystallite sizes from powder profiles 

Particle size in powders is determined by studying 
line broadening in diffraction patterns. The traditional 
approach is exemplified by the now classic Warren & 
Averbach (1950) paper, which depicts the sample as a 
column-like structure of unit cells perpendicular to the 
diffracting plane. Each of these columns makes an 
independent contribution to the powder diffraction 
pattern. The standard nomenclature is somewhat 
different from that used in SAS: an interference 
function of the form 

G(N, lp) = sinZ(N~p)/sin 2 ~ (36) 

arises, where ~p = 27rd sin 0/2 with d the d spacing. If 
we measure the intensity I(~) at 0, the required 
distribution function for particle sizes is given by 

lOP) -- K y~p(N)G(N, ~p), (37) 

where K is usually considered to be a constant and p(N) 
is the required size-distribution function, conventionally 
determined by Fourier methods. The parallels with (33) 
are obvious. A main source of error in conventional 
Fourier approaches arises from problems with peak 
truncation: a truncation of 20% leads to size errors of 
over 100% (Young, Gerdes & Wilson, 1967); this poses 
problems in the case of the overlap of tails in adjacent 
diffraction peaks. A conventional ME approach to 
determining p(N) showing many similarities with the 
SAS calculations in §6.1 is described by Gu6rin, 
Alvarez, Rebollo Neira, Plastino & Bonetto (1986). 
As seems usual, both ideal and real data are used as 
trials, the latter that of montmorillonite with very small 
particle size. The conclusion is quite dramatic: trunca- 
tion errors of 20% lead to only 5% errors in the size 
distribution. The ME formalism is thus an obvious 
candidate for data sets where peak overlap is a problem. 

Mazumder, Bhagwat & Sequeria (1995) have 
extended these ideas to extract particle size distributions 
from multiple small-angle scattering experiments using 
different priors. The comparisons with more conven- 
tional methods look convincing. 

6.3. Conclusions 

What are the conclusions here? It is obvious that the 
determination of particle size distributions is, in 
general, a much simpler and less controversial problem 
than others that we have addressed in this review, and 
one that seems to produce good results, in general, with 
well established inversion techniques. Nonetheless, the 
ME method has its usual improvements to offer. It can 
propagate and use experimental errors, it avoids 
interpolation problems, it admits the use of non-uniform 
priors, and it is less sensitive than conventional methods 
to both initial assumptions concerning particle size and 
shape and to the extent of the measured data. If a 
computer program using the ME formalism was offered 
to the SAS community, it would probably be used quite 
routinely. There is, however, in the author's view much 
that can still be done especially using non-uniform prior 
distributions. 

7. Algorithms for entropy maximization 

7.1. Introduction 

Throughout this review, the process of entropy 
maximization itself has been taken for granted. In this 
final section, we discuss briefly entropy maximization 
algorithms. The problem takes two forms: 

(i) Unconstrained: as in scaling reflections measured 
under different conditions (Collins, 1984). This-is a 
relatively straightforward problem and is discussed by 
Prince & Collins (1992), who also give the example of 
linear fitting using entropy. 

(ii) Constrained: this is much more difficult. There 
are already two brief surveys in a crystallographic 
context by Bricogne (1984, 1993). His nomenclature 
will be used here since it is best suited for crystallo- 
graphic purposes and is also that used in ~ .3 .  

Let q(x) be non-uniform prior. It is to have its 
entropy maximized to generate qME(x) relative to a 
prior m(x) (which, of course, can be uniform), i.e. we 
wish to maximize the entropy, S: 

S(q) = - f q(x)log[q(x)/m(x)]d3x (38) 
v 

or, in the case of N discrete pixels, 

N 

S(q) = - ~ qi log qi/mi, (39) 
i=l  

subject to a set of M constraints. The most useful 
example is that using M phased reflections (i.e. those 
with known amplitudes and phases) as constraints, but 
this is easily extendable to other situations. We will 
define a set {H} of unitary structure factors with 
amplitude I Uhl and associated phase ~ ,  in which case 
the constraint equations may be written 
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f qME(x) exp(2rrih • x) d3x -- I Uhl exp(i~) = cj 
v 

(j = 1, 2 . . . . .  M), (40) 

i.e. qME(x) must reproduce the amplitudes and phases of 
the U's in {H} via a Fourier transform. In the discrete 
case, these can be written 

N 
qj exp(2zrih i • rj) - Uhi exp(i~ohi) 

j= l  

N 
= ~qjAq,  i :  1 . . . . .  M, (41) 

j= l  

where the terms Aij are the constraints, qj is the number 
of electrons in the pixel located at ri and h i is the vector 
of Miller indices for reflection i. The constraints are 
convex and so the maximum entropy equations derived 
from them should lead to a unique solution. In the case 
of amplitude constraints, without phase information, 
this property is lost and we are confronted by the 
so-called 'branching problem' with its associated multi- 
modality problems. 

The required constrained maximum is equivalent to 
the unconstrained minimum of the dual function: 

M 
L(q) = -S(q) + ~ 2jC(q). (42) 

j= l  

In principle, the optimization problem is solved by the 
application of the method of Lagrange multipliers. Let 
the multiplier associated with constraint i be 2/and let 
the vector of such multipliers be k, then the required 
maximum entropy distribution is 

qME(x) = [m(x)/Z(21, Z2 ..... 2M)] 

× exp [ j ~ - 2 j  e x p ( 2 z r i h J = l  .x)] .  (43) 

The 2's are the Lagrange multipliers, one per 
constraint. If the constraints are complex, then so are 
the corresponding multipliers. The normalization 
requirement gives 

Z( /~I ,  '~2 . . . . .  /I'M) 

=fm(x)expli~-2iexp(2Jrihj 'x)]d3x=l (44) 

and, finally, 

O(logZ)/0Ay = cj. (45) 

In the discrete case, the equations are 

Pi = mJZ(k)exp - ~_, 2,A,~ , (46) 
r=l  

where 

Z(k) = E mi exp - E 2rAr~ • (47) 
i=1 r=l  

We now have a set of M coupled non-linear equations 
and need an efficient algorithm for their solution, i.e. 
we need to determine the individual 2's to generate 
qME(x). Note, and this is important, that we are not 
attempting to maximize the entropy with respect to the 
2's (Bricogne, 1991b, 1993). 

Perhaps the most obvious method is the Gauss- 
Newton technique (Agmon, Alhassid & Levine, 1979; 
Bricogne, 1984; Navaza, 1985, 1991). Let k ") be a 
vector of trial Lagrange multipliers at iteration i. Then 
(Bricogne, 1984), 

k "+l) = k ~i) + [H(logZ<i))] -I (C (i+l) - -  c ( i ) ) ,  (48) 

where 

z(i)~ fm(x)explj~-2jexp(2zrihJv =1 .x)] d3x (49) 

and 

q'/)(x) = [m(x)/Z(/)] exp (j ~ -)L~i) exp(2rtihj " (50) 

with 

c) i) = f qti)(x)exp(ZTrihj . x) d3x. (51) 
V 

In the same paper, Bricogne has shown that Bertaut's 
linearization techniques can be used to generate the 
elements of [H(log Z"))] in a straightforward way. 

The explicit use of the dual function for solving the 
maximum entropy equations was first suggested by 
Agmon, Alhassid & Levine (1979). It has been 
extensively adapted by Bricogne (1993) and used in a 
different form by Prince (1989, 1993). This method of 
solving the ME equations is still Gauss-Newton based 
but works explicitly with (45). In all cases, the shifts 
predicted by the NR method need to be treated with 
caution since it assumes a locally quadratic function, 
and the entropy functional is markedly non-quadratic 
for large shifts. Also, the method may not be globally 
convergent unless the shifts are controlled. Often, a 
line-search method along the Newton direction is 
employed to suitably damp them (Bricogne, 1984, 
1993; Prince, 1989). In fact, in all the algorithms 
described here, the use of line and plane searches 
(Prince & Boggs, 1992; Bricogne & Gilmore, 1990) is 
essential in conferring stability. 

However, as M increases, the building and inversion 
of the Hessian matrix can become very slow, as well as 
posing stability problems with very large matrices; this 
is a standard problem with the Newton method, but can 
be overcome by using suitable approximations. These 
are now discussed. 
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7.2. Exponential modelling 

The key to understanding the exponential modelling 
method (Collins, 1982; Collins & Mahar, 1983; 
Bricogne & Gilmore, 1990; Stewart Collins, 
Watenpaugh, Prince & Hall, 1993; Collins & Prince, 
1991) is the approximation: 

[H(log z(i))] -1 , - ~  1/q~i). (52) 

The process of entropy maximization can then be 
re-written as a real-space scheme of map multiplication 
and division on a pixel-by-pixel basis. In its simplest 
form, the method is often unstable largely due to the 
process of taking the reciprocal of q but, with the proper 
control and shaping of the shifts using line searches 
along the Newton direction or plane searches along the 
Newton and constraint directions, it is a method of great 
stability and versatility that is used in the MICE 
computer program (Bricogne & Gilmore, 1990) with 
basis set sizes that range from M----1 to several 
thousand. Since it is a Fourier method employing 
FFTs, the computational complexity is of order N log N 
for N reflections. 

7.3. The Skilling algorithm and related techniques 

Skilling's algorithm (Skilling & Bryan, 1984; 
Bricogne, 1984; Titterington, 1985) was designed as a 
general-purpose method for entropy maximization with 
incomplete and noisy data, and is not specific to 
crystallographic problems although it has been used in 
this environment (e.g. Livesey & Skilling, 1985; 
Potton, Daniell & Rainford, 1988a,b). This method 
addresses the problems of the Hessian matrix by 
defining a search subspace in n vectors with n typically 
3, 4 or 6. The constraints and the entropy are modelled 
as locally quadratic functions around the current 
position, giving rise to scalar products which are 
readily evaluated, and an entropy metric is also defined, 
which makes it easier to control the size of the shifts that 
are produced. Bricogne (1984) has produced an elegant 
algorithm that extends the scope of this method to non- 
convex (in this case amplitude only) constraints with the 
associated potential of solving the branching problem in 
some aspects of the crystallographic phase problem. 
The algorithm is reported to be very stable and, just as 
for exponential modelling, has a computational com- 
plexity of N log N for N reflections. 

7.4. Pixel methods 

In pixel methods, we look explicitly at formulations 
of the ME equations that explicitly treat the individual 
map pixels. The first of these involves the single-pixel 
equations of Wilkins et al. (Wilkins, Varghese & 
Lehmann, 1983; Wilkins & Stuart, 1986; Wilkins, 
1983a,b). In this approach, each pixel is considered to 
be independent of any other with its own Lagrangian 

multiplier and the exponent in the ME equations is 
Taylor expanded to first order in qj. The Hessian matrix 
is then reduced to a diagonal form by only including 
those t e r m s  02Aij/OqiOqj for which i ----j. Each pixel then 
becomes independent of any other (hence its name, the 
single-pixel approximation), and the solution of the ME 
equations becomes relatively simple and quick to 
compute by a Newton method. An accelerated conver- 
gence procedure is also proposed (Wilkins, 1983b) 
using the contrast between successive iterations. This 
approach is much used in electron density studies and is 
examined in this context by Kumazawa, Takata & 
Sakata (1995a) to see if the underlying approximations 
are valid or could be sufficient to prevent a correct 
solution. They conclude, from studying a very simple 
two-pixel model, that, providing the Lagrangian multi- 
pliers associated with each pixel remain small, the 
solutions produced are exact. This constraint on the 
magnitude of the multipliers is somewhat worrying, but 
large values would introduce divergences in the 
calculations, which should be easy to trap in a suitable 
computer program. 

Johnson's METRIC algorithm (Johnson, 1987) is also 
a pixel method that linearizes the exponential in the ME 
equations via the approximation 

exp(b~o) - (1 + aco) b/" (53) 

for a suitable choice of a. To what extent these single- 
pixel methods face stability problems because of their 
underlying assumptions is not clear, but current usage 
of the technique seems restricted. 

7.5. Annealing methods 

Simulated annealing is an established optimization 
technique, which is invaluable in situations where the 
global maximum or minimum is difficult to attain 
because of the presence of local optimum points. For 
convex constraints, which have been the major topic of 
the previous section, this is not a problem but, where 
amplitude information is used, the non-convexity of the 
constraints because a problem. McLachlan (1993) has 
applied annealing techniques to the situation where only 
amplitude constraints, without phase information, are 
available. He has called the method entropy phase 
dynamics. His published application, however, is to a 
multisolution phase environment using phased subsets 
of reflections for the membrane protein bacterio- 
rhodopsin (Henderson, Baldwin, Downing, Lepault & 
Zemlin, 1986). In this case, the procedure seems to find 
the correct entropy maximum. 

7.6. Which method is the most useful for crystal- 
lographers ? 

In some sense, this is an academic question. There 
are as many variants of methodology of entropy 
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maximization as there are workers in the field, and there 
are very few, if any, freely available computer 
programs or subroutine libraries that perform these 
calculations in a crystallographic environment. The 
most notable exception is in the XTAL package. 
XTAL3.2 (Stewart, Collins, Watenpaugh, Prince & 
Hall, 1993) has several routines (e.g. MERUN, 
MEDENS, MEFFIT, MESTAR and MEPHAS) for 
generating maximum entropy maps using phased 
reflections as constraints. In general, however, most 
workers in the field have code that is perhaps too 
specialized or too experimental to make it suitable for 
public distribution. So one must often write one's own, 
which is a non-trivial task. For relatively simple 
situations, i.e. unconstrained optimization, it can be 
relatively straightforward, but for situations where there 
are multiple constraints the problem can be difficult. 
Most published algorithms seem to work effectively. 

8. Conclusions 

Writing and researching this review has been a mixed 
experience. There is excitement at all the crystal- 
lographic problems that are being addressed, from data 
processing, the phase problem in a wide variety of 
situations and particle sizes through to accurate electron 
density determinations, combined with some frustration 
that it has not yet reached mainstream crystallography. 
The reasons for this are made clear throughout this 
review, and they all hinge partly on available software 
and partly on the relative newness of the ME approach. 
This will change as the subject matures and with it, I am 
convinced, will come an explosion of activity. Let us 
finish with a few words from Jaynes (1989): 'Although 
the terms "Bayesian" and "Maximum Entropy" 
appear prominently in the announcements of our 
meetings, our efforts are somewhat more general. 
Stated broadly, we are concerned with this: "What 
are the theoretically valid, and pragmatically useful 
ways of applying probability theory in science?"'  
Later, in the same paper, Jaynes quotes Maxwell: 
'Probability theory is itself the true logic of 
science.' 

We hope that we have given some flavour of how 
maximum entropy and Bayesian statistics are better 
ways of applying probability theory and logic in 
crystallography; they are theoretically valid and the 
string of results demonstrates their pragmatism. The 
author's own view is summed up in a final quotation 
from that great American climber, Royal Robbins: 
". . .The other is faith. You have to have faith in what 
you're doing. You have to have faith that a certain 
approach is the best one, that it's going to give you the 
best chance of getting what you're after.' I have that 
faith in the ME formalism. 

My thanks above all to G6rard Bricogne (MRC, 
Cambridge, England) for his endless enthusiasm and 
knowledge with a willingness to explain; to Charles 
Carter (University of North Carolina, USA), to Doug 
Dorset (HWI, Buffalo) and to everyone who has worked 
with me in this field for the same commitment. One 
referee of this paper read it with great care, and made 
invaluable suggestions for improvement for which I am 
very grateful. 
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